期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Some Notices on Mina Matrix and Allied Determinant Identities
1
作者 Jin WANG Xinrong MA 《Journal of Mathematical Research with Applications》 CSCD 2016年第3期253-264,共12页
By means of a special LU factorization of the Mina matrix with the n-th row and k-th column entry D_x^n (f^(ak)(x)), we obtain not only a short proof of the Mina determinant identity but also the inverse of the ... By means of a special LU factorization of the Mina matrix with the n-th row and k-th column entry D_x^n (f^(ak)(x)), we obtain not only a short proof of the Mina determinant identity but also the inverse of the Mina matrix. Finally, by use of some similar factorizations built on the Lagrange interpolation formula, two new determinant identities of Mina type are established. 展开更多
关键词 factorization interpolation inverse triangular proof determinant differentiable arbitrary polynomial neighborhood
原文传递
关于分块三角矩阵的几个行列式不等式
2
作者 刘俊同 《阜阳师范学院学报(自然科学版)》 2019年第4期1-3,共3页
设T=éê X0 YZù ú是n阶级分块矩阵,X和Z分别是r级矩阵和n-r级方阵。Lin证明了一个有趣的行列式不等 式,det(In+T*T)≥det(Ir+X*X) det(In-r+Z*Z)。利用 Hadamard积和复合矩阵的性质,本文证明了上述不等式关于 Had- a... 设T=éê X0 YZù ú是n阶级分块矩阵,X和Z分别是r级矩阵和n-r级方阵。Lin证明了一个有趣的行列式不等 式,det(In+T*T)≥det(Ir+X*X) det(In-r+Z*Z)。利用 Hadamard积和复合矩阵的性质,本文证明了上述不等式关于 Had- amard 积的模拟不等式,即涉及 Hadamard 积的行列式不等式。 展开更多
关键词 分块三角矩阵 行列式不等式 半正定矩阵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部