In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k ...In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.展开更多
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb...Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.展开更多
Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts o...Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
A graph G is H-free,if it contains no H as a subgraph.A graph G is said to be H-minor free,if it does not contain H as a minor.In 2010,Nikiforov asked that what the maximum spectral radius of an H-free graph of order ...A graph G is H-free,if it contains no H as a subgraph.A graph G is said to be H-minor free,if it does not contain H as a minor.In 2010,Nikiforov asked that what the maximum spectral radius of an H-free graph of order n is.In this paper,we consider some Brualdi-Solheid-Turan type problems on bipartite graphs.In 2015,Zhai,Lin and Gong in[Linear Algebra Appl.,2015,471:21-27]proved that if G is a bipartite graph with order n≥2k+2 and ρ(G)≥ρ(K_(k,n-k)),then G contains a C_(2k+2) unless G≌K_(k,n-k).First,we give a new and more simple proof for the above theorem.Second,we prove that if G is a bipartite graph with order n≥2k+2 and ρ(G)≥ρ(K_(k,n-k)),then G contains all T_(2k+3) unless G≌K_(k,n-k).Finally,we prove that among all outerplanar bipartite graphs on n≥308026 vertices,K_(1,n-1) attains the maximum spectral radius.展开更多
Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to asse...Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China.展开更多
Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution an...Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.展开更多
Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate...Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.展开更多
The growth,survival,and mortality of conifer species in response to the hydrothermal regime have received considerable attention.It is expected that the highest sensitivity of trees to the warming-drying climate will ...The growth,survival,and mortality of conifer species in response to the hydrothermal regime have received considerable attention.It is expected that the highest sensitivity of trees to the warming-drying climate will occur mainly at the edges of the species ranges.We focused on the responses to climate change of the drought-resistant larch(Larix sibirica)and the moisture-sensitive Siberian pine(Pinus sibirica)along the elevation gradient in the Tannu-Ola Ridge,the southern margin where those two species coexist in Siberia by using satellite data(MODIS,Landsat,and microwave),the indexes of gross(GPP)and net(NPP)primary productivity,and tree radial growth index(GI).We found that since the warming restart in the 2000s,the area of larch-dominated forests increased by~150%while the area of pine-dominated forests decreased by~10%.The Siberian pine has retreated at low elevations(<1800 m)and increased its area at higher ones.In contrast,the area of larch stands increased in both the uphill and downhill directions.Birch(Betula spp.)also increased its area at low elevations(about+120%).Since 2001,the forested area increased by~5%.A shrubification,i.e.,an increase in the area of shrubs,was observed at high elevations.The uphill rate of timberline and shrubline migration was about 0.3 m/a.Since the 2000s,vegetation NPP has increased by 13%.A notable correlation between NPP and the GI of larch and pine was found(r=0.5-0.7).At lower elevations,NPP positively correlated with precipitation and soil moisture,while air temperature and VPD(vapor pressure deficit)increase inhibited productivity.At high elevations,the effects of these variables on productivity reversed.The continuous decline of the Siberian pine forest indicates an inevitable retreat of this species at low elevations and its replacement by larch and birch.展开更多
In winter,the weather is usually cold and everything seems a bit dull.Butthe sun in winter is special.When the sun shines brightly in the clear blue sky,it brings warm(1)to thecold world.The golden sunlight spreads he...In winter,the weather is usually cold and everything seems a bit dull.Butthe sun in winter is special.When the sun shines brightly in the clear blue sky,it brings warm(1)to thecold world.The golden sunlight spreads here and there and it makes the whitesnow shine like diamonds.Although the trees are usually bare in winter,but(2)they look beautiful with the sunlight falling on them.展开更多
一、完形填空阅读短文,掌握其大意,从A、B、C三个选项中选择最佳答案填空。It's a hot summer day.Jake and Harry are working hard in the garden.Their friend Ralph is__1__under a tree.Jake asks Harry,"Why are we here...一、完形填空阅读短文,掌握其大意,从A、B、C三个选项中选择最佳答案填空。It's a hot summer day.Jake and Harry are working hard in the garden.Their friend Ralph is__1__under a tree.Jake asks Harry,"Why are we here in the__2__sun when Ralph is sitting there?"Hary says,"I don't know.I will go and ask him."展开更多
Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating t...Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating the adoption of advanced,automated approaches for improved forest conservation and management.This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery.A dataset of 3157 images was collected and divided into training(2528),validation(495),and testing(134)sets.To enhance model robustness and generalization,data augmentation was applied to the training part of the dataset.Various YOLO-based models,including YOLOv8,YOLOv9,YOLOv10,YOLOv11,and YOLOv12,were evaluated using different hyperparameters and optimization techniques,such as stochastic gradient descent(SGD)and auto-optimization.These models were assessed in terms of detection accuracy and the number of detected trees.The highest-performing model,YOLOv12m,achieved a mean average precision(mAP@50)of 0.908,mAP@50:95 of 0.581,recall of 0.851,precision of 0.852,and an F1-score of 0.847.The results demonstrate that YOLO-based object detection offers a highly efficient,scalable,and accurate solution for individual tree detection in satellite imagery,facilitating improved forest inventory,monitoring,and ecosystem management.This study underscores the potential of AI-driven tree detection to enhance environmental sustainability and support data-driven decision-making in forestry.展开更多
The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations...The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts.展开更多
The Chinese tree shrew has gained prominence as a model organism due to its phylogenetic proximity to primates,offering distinct advantages over traditional rodent models in biomedical research.However,the neuroanatom...The Chinese tree shrew has gained prominence as a model organism due to its phylogenetic proximity to primates,offering distinct advantages over traditional rodent models in biomedical research.However,the neuroanatomy of this species remains insufficiently defined,limiting its utility in neurophysiological and neuropathological studies.In this study,immunofluorescence microscopy was employed to comprehensively map the distribution of three calciumbinding proteins,parvalbumin,calbindin D-28k,and calretinin,across the tree shrew cerebrum.Serial brain sections in sagittal,coronal,and horizontal planes from 12 individuals generated a dataset of 3638 cellular-resolution images.This dataset,accessible via Science Data Bank(https://doi.org/10.57760/sciencedb.23471),provides detailed region-and laminar-selective distributions of calcium-binding proteins valuable for the cyto-and chemoarchitectural characterization of the tree shrew cerebrum.This resource will not only advance our understanding of brain organization and facilitate basic and translational neuroscience research in tree shrews but also enhance comparative and evolutionary analyses across species.展开更多
基金supported in part by National Basic Research Program of China(973 Project)(No.2014CB239501)National Natural Science Foundation of China(Nos.51707100,51377089)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE16208)China Postdoctoral Science Foundation(No.2016M591176)
文摘In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202070002)the Guangxi Science and Technology Major Program(Grant No.GuikeAA23023007-2)+1 种基金the Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project(2024CXTD19)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010303)。
文摘Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.
基金funded by the National Key Research and Development Plan of China(No.2022YFE0127900)the National Natural Science Foundation of China(Nos.32071558,32171559)+2 种基金the Natural Science Foundation Key Project of Inner Mongolia Autonomous Region,China(No.2023ZD23)the Hulunbuir Science and Technology Plan Project(No.SF2022001)the Fundamental Research Funds of CAF(CAFYBB2023ZA002).
文摘Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金Supported by NSFC(No.12271162)Natural Science Foundation of Shanghai(No.22ZR1416300).
文摘A graph G is H-free,if it contains no H as a subgraph.A graph G is said to be H-minor free,if it does not contain H as a minor.In 2010,Nikiforov asked that what the maximum spectral radius of an H-free graph of order n is.In this paper,we consider some Brualdi-Solheid-Turan type problems on bipartite graphs.In 2015,Zhai,Lin and Gong in[Linear Algebra Appl.,2015,471:21-27]proved that if G is a bipartite graph with order n≥2k+2 and ρ(G)≥ρ(K_(k,n-k)),then G contains a C_(2k+2) unless G≌K_(k,n-k).First,we give a new and more simple proof for the above theorem.Second,we prove that if G is a bipartite graph with order n≥2k+2 and ρ(G)≥ρ(K_(k,n-k)),then G contains all T_(2k+3) unless G≌K_(k,n-k).Finally,we prove that among all outerplanar bipartite graphs on n≥308026 vertices,K_(1,n-1) attains the maximum spectral radius.
文摘Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China.
基金financial support provided by the German Research Foundation,DFG,through grant number KL894/23-2 and NO 1444/1-2 as part of the Research Unit FOR2432/2the China Scholarship Council(CSC)that supports the first author with a Ph D scholarshipsupport provided by Indian partners at the Institute of Wood Science and Technology(IWST),Bengaluru。
文摘Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.
基金part of the project“Areas of Forest Innovation Climate Smart Forestry”(project nr.101726),WP Modelling Plenter Forest vs.Even-aged Forest,funded by the Austrian Ministry of Agriculture,Forestry,Regions and Water Managementfunded by the province of Styria(Austria),the Austrian Federal Ministry of Agriculture,Forestry,Regions and Water Management and the European Union via the projects“Waldtypisierung Steiermark-FORSITE”(LE14-20)and“FORSITEⅡ-Investigation of the ecological base line information for a dynamic forest site classification in Upper Austria,Lower Austria and Burgenland”(101746)financial support came from BOKU University。
文摘Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.
基金supported by the Tomsk State University Development Program(《Priority-2030》)the Basic Project of the Federal Research Center of the Scientific Center,no.FWES-2024-0023the Russian Science Foundation(project No.23-14-20015)。
文摘The growth,survival,and mortality of conifer species in response to the hydrothermal regime have received considerable attention.It is expected that the highest sensitivity of trees to the warming-drying climate will occur mainly at the edges of the species ranges.We focused on the responses to climate change of the drought-resistant larch(Larix sibirica)and the moisture-sensitive Siberian pine(Pinus sibirica)along the elevation gradient in the Tannu-Ola Ridge,the southern margin where those two species coexist in Siberia by using satellite data(MODIS,Landsat,and microwave),the indexes of gross(GPP)and net(NPP)primary productivity,and tree radial growth index(GI).We found that since the warming restart in the 2000s,the area of larch-dominated forests increased by~150%while the area of pine-dominated forests decreased by~10%.The Siberian pine has retreated at low elevations(<1800 m)and increased its area at higher ones.In contrast,the area of larch stands increased in both the uphill and downhill directions.Birch(Betula spp.)also increased its area at low elevations(about+120%).Since 2001,the forested area increased by~5%.A shrubification,i.e.,an increase in the area of shrubs,was observed at high elevations.The uphill rate of timberline and shrubline migration was about 0.3 m/a.Since the 2000s,vegetation NPP has increased by 13%.A notable correlation between NPP and the GI of larch and pine was found(r=0.5-0.7).At lower elevations,NPP positively correlated with precipitation and soil moisture,while air temperature and VPD(vapor pressure deficit)increase inhibited productivity.At high elevations,the effects of these variables on productivity reversed.The continuous decline of the Siberian pine forest indicates an inevitable retreat of this species at low elevations and its replacement by larch and birch.
文摘In winter,the weather is usually cold and everything seems a bit dull.Butthe sun in winter is special.When the sun shines brightly in the clear blue sky,it brings warm(1)to thecold world.The golden sunlight spreads here and there and it makes the whitesnow shine like diamonds.Although the trees are usually bare in winter,but(2)they look beautiful with the sunlight falling on them.
文摘一、完形填空阅读短文,掌握其大意,从A、B、C三个选项中选择最佳答案填空。It's a hot summer day.Jake and Harry are working hard in the garden.Their friend Ralph is__1__under a tree.Jake asks Harry,"Why are we here in the__2__sun when Ralph is sitting there?"Hary says,"I don't know.I will go and ask him."
基金funding from Horizon Europe Framework Programme(HORIZON),call Teaming for Excellence(HORIZON-WIDERA-2022-ACCESS-01-two-stage)-Creation of the centre of excellence in smart forestry“Forest 4.0”No.101059985funded by the EuropeanUnion under the project FOREST 4.0-“Ekscelencijos centras tvariai miško bioekonomikai vystyti”No.10-042-P-0002.
文摘Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating the adoption of advanced,automated approaches for improved forest conservation and management.This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery.A dataset of 3157 images was collected and divided into training(2528),validation(495),and testing(134)sets.To enhance model robustness and generalization,data augmentation was applied to the training part of the dataset.Various YOLO-based models,including YOLOv8,YOLOv9,YOLOv10,YOLOv11,and YOLOv12,were evaluated using different hyperparameters and optimization techniques,such as stochastic gradient descent(SGD)and auto-optimization.These models were assessed in terms of detection accuracy and the number of detected trees.The highest-performing model,YOLOv12m,achieved a mean average precision(mAP@50)of 0.908,mAP@50:95 of 0.581,recall of 0.851,precision of 0.852,and an F1-score of 0.847.The results demonstrate that YOLO-based object detection offers a highly efficient,scalable,and accurate solution for individual tree detection in satellite imagery,facilitating improved forest inventory,monitoring,and ecosystem management.This study underscores the potential of AI-driven tree detection to enhance environmental sustainability and support data-driven decision-making in forestry.
文摘The Arctic region is experiencing accelerated sea ice melt and increased iceberg detachment from glaciers due to climate change.These drifting icebergs present a risk and engineering challenge for subsea installations traversing shallow waters,where ice-berg keels may reach the seabed,potentially damaging subsea structures.Consequently,costly and time-intensive iceberg manage-ment operations,such as towing and rerouting,are undertaken to safeguard subsea and offshore infrastructure.This study,therefore,explores the application of extra tree regression(ETR)as a robust solution for estimating iceberg draft,particularly in the preliminary phases of decision-making for iceberg management projects.Nine ETR models were developed using parameters influencing iceberg draft.Subsequent analyses identified the most effective models and significant input variables.Uncertainty analysis revealed that the superior ETR model tended to overestimate iceberg drafts;however,it achieved the highest precision,correlation,and simplicity in estimation.Comparison with decision tree regression,random forest regression,and empirical methods confirmed the superior perfor-mance of ETR in predicting iceberg drafts.
基金supported by the Science and Technology Innovation(STI)2030-Major Projects(2022ZD0205000 to L.L.)CAS“Light of West China”Program(xbzg-zdsys-202404 to L.L.)+1 种基金Yunnan Revitalization Talent Support Program Yunling Scholar Project(to L.L.)Yunnan Fundamental Research Projects(202305AH340006,202301AS070060 to L.L.,202401AT070206 to X.C.)。
文摘The Chinese tree shrew has gained prominence as a model organism due to its phylogenetic proximity to primates,offering distinct advantages over traditional rodent models in biomedical research.However,the neuroanatomy of this species remains insufficiently defined,limiting its utility in neurophysiological and neuropathological studies.In this study,immunofluorescence microscopy was employed to comprehensively map the distribution of three calciumbinding proteins,parvalbumin,calbindin D-28k,and calretinin,across the tree shrew cerebrum.Serial brain sections in sagittal,coronal,and horizontal planes from 12 individuals generated a dataset of 3638 cellular-resolution images.This dataset,accessible via Science Data Bank(https://doi.org/10.57760/sciencedb.23471),provides detailed region-and laminar-selective distributions of calcium-binding proteins valuable for the cyto-and chemoarchitectural characterization of the tree shrew cerebrum.This resource will not only advance our understanding of brain organization and facilitate basic and translational neuroscience research in tree shrews but also enhance comparative and evolutionary analyses across species.