期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
系统发育信息学及网络资源 被引量:1
1
作者 钱召强 叶维萍 黄原 《Entomotaxonomia》 CSCD 北大核心 2006年第4期315-320,共6页
系统发育信息学是近年来形成的新的学科方向,是系统学研究领域的一个新兴生长点。系统发育信息学是存贮、管理、注释、开发和加工系统树及其相关生物学信息的交叉学科。它的方法是基于计算机和网络技术,包括大型系统树及其相关生物学数... 系统发育信息学是近年来形成的新的学科方向,是系统学研究领域的一个新兴生长点。系统发育信息学是存贮、管理、注释、开发和加工系统树及其相关生物学信息的交叉学科。它的方法是基于计算机和网络技术,包括大型系统树及其相关生物学数据库的建立,系统树数据库网络的构架,系统树的可视化显示,小系统树的联合与超树的建立、用户查询、搜索和下载等,最终目的是要建立一个囊括地球上所有生物的系统树及其相关信息的数据库,将各种生物在树上精确定位,并进一步通过对系统发育信息的查询、搜索、联合与分析,从中获取生命进化的知识和进行生物学的预测。目前可用的系统发育网络资源主要有CIPRes和系统发育软件(PhylogenyPrograms)网站,已建立的系统发育信息学数据库包括TreeBASE,TreeofLife,Species2000,NCBITaxonomy数据库等。 展开更多
关键词 系统发育信息学 TreeBASE数据库 生命之树 SPECIES 2000数据库 NCBI分类数据库
在线阅读 下载PDF
Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning
2
作者 Zhanjie Liu Yixuan Huo +5 位作者 Qionghai Chen Siqi Zhan Qian Li Qingsong Zhao Lihong Cui Jun Liu 《Materials Genome Engineering Advances》 2024年第4期59-76,共18页
Solution styrene-butadiene rubber(SSBR)finds wide applications in high performance tire design and various other fields.This study aims to create a quantitative structure–property relationship(QSPR)model linking SSBR... Solution styrene-butadiene rubber(SSBR)finds wide applications in high performance tire design and various other fields.This study aims to create a quantitative structure–property relationship(QSPR)model linking SSBR's glass transition temperature(Tg)to its structural properties.A dataset of 68 sets of data from published literature was compiled to develop a predictive machine learning model for SSBR's structural design and synthesis using small sample sizes.To tackle small sample sizes,a framework combining generative adversarial networks(GAN)and the Tree-based Pipeline Optimization Tool(TPOT)is proposed.GAN is first used to generate additional samples that mirror the original dataset's distribution,expanding the dataset.The TPOT is then applied to automatically find the best model and parameter combinations,creating an optimal predictive model for the mixed dataset.Experimental results show that using GAN to enlarge the dataset and TPOT regression models significantly enhances model performance,increasing the R2 value from 0.745 to 0.985 and decreasing the RMSE from 7.676 to 1.569.The proposed GAN–TPOT framework demonstrates the potential of combining generative models with automated machine learning to improve materials science research.This combination accelerates research and development processes,enhances prediction and design accuracy,and introduces new perspectives and possibilities for the field. 展开更多
关键词 generative adversarial networks glass transition temperature solution styrene-butadiene rubber treebased pipeline optimization tool virtual sample generation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部