期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation 被引量:1
1
作者 Hamza Murad Khan Anwar Khan +3 位作者 Santos Gracia Villar Luis Alonso DzulLopez Abdulaziz Almaleh Abdullah M.Al-Qahtani 《Computers, Materials & Continua》 2025年第5期3369-3388,共20页
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models... Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes. 展开更多
关键词 Short-term traffic prediction sequential time series prediction TPE tree-structured parzen estimator LSTM hyperparameter tuning hybrid prediction model
在线阅读 下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测 被引量:2
2
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构parzen估计器 超参数优化 长短期记忆神经网络
原文传递
Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator 被引量:3
3
作者 Junlang Li Zhenguo Chen +7 位作者 Xiaoyong Li Xiaohui Yi Yingzhong Zhao Xinzhong He Zehua Huang Mohamed A.Hassaan Ahmed El Nemr Mingzhi Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第6期23-35,共13页
Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in... Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in real time,thus influencing the judgment of the operators and may increase energy consumption and carbon emission.One of the solutions is using a soft-sensor prediction technique.This article introduces a water quality soft-sensor prediction method based on Bidirectional Gated Recurrent Unit(BiGRU)combined with Gaussian Progress Regression(GPR)optimized by Tree-structured Parzen Estimator(TPE).TPE automatically optimizes the hyperparameters of BiGRU,and BiGRU is trained to obtain the point prediction with GPR for the interval prediction.Then,a case study applying this prediction method for an actual anaerobic process(2500 m^(3)/d)is carried out.Results show that TPE effectively optimizes the hyperparameters of BiGRU.For point prediction of CODeff and biogas yield,R^(2)values of BiGRU,which are 0.973 and 0.939,respectively,are increased by 1.03%–7.61%and 1.28%–10.33%,compared with those of other models,and the valid prediction interval can be obtained.Besides,the proposed model is assessed as a reliable model for anaerobic process through the probability prediction and reliable evaluation.It is expected to provide high accuracy and reliable water quality prediction to offer basis for operators in WWTPs to control the reactor and minimize carbon emission and energy consumption. 展开更多
关键词 Water quality prediction Soft-sensor Anaerobic process tree-structured parzen estimator
原文传递
基于树结构Parzen估计器优化集成学习的短期负荷预测方法 被引量:2
4
作者 罗敏 杨劲锋 +6 位作者 俞蕙 赖雨辰 郭杨运 周尚礼 向睿 童星 陈潇 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期819-825,共7页
短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响... 短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响,以及预测对象自身个性差异使得参数难以复用,如何精准快速地获取方法结构与参数成为短期负荷预测的关键难题.对此,提出基于树结构Parzen估计器优化集成学习的短期负荷预测方法,可对方法结构与参数进行快速寻优.将该方法应用于中国南方某省短期负荷预测,以实际算例验证了其对预测精度的有效提升. 展开更多
关键词 短期负荷预测 树结构parzen估计器 集成学习 超参优化
在线阅读 下载PDF
水平定向钻载荷下天然气管道失效智能预测研究
5
作者 何婷 杨松 +3 位作者 张开 陈利琼 黄坤 陈星宇 《安全与环境学报》 北大核心 2025年第4期1370-1379,共10页
为研究水平定向钻载荷下埋地天然气管道的失效条件,结合水平定向钻施工特点和天然气管道实际情况,建立了钻头-土体-管道有限元模型,得到包括影响水平定向钻载荷作用的六个关键特征变量的失效数据集。基于该数据集,建立智能失效预测模型... 为研究水平定向钻载荷下埋地天然气管道的失效条件,结合水平定向钻施工特点和天然气管道实际情况,建立了钻头-土体-管道有限元模型,得到包括影响水平定向钻载荷作用的六个关键特征变量的失效数据集。基于该数据集,建立智能失效预测模型,通过树结构Parzen估计器(Tree-structured Parzen Estimator,TPE)优化极端梯度提升(Extreme Gradient Boosting,XGBoost)模型性能。结果表明,与支持向量积、随机森林、贝叶斯回归等算法相比,XGBoost-TPE算法性能最好,平均绝对误差(Mean Absolute Error,MAE)为7.8127 MPa,均方根误差(Root Mean Square Error,RMSE)为11.3256 MPa,决定系数(R2)为0.9891。研究可为天然气管道交叉工程及周边工程水平定向钻施工风险定量评价及安全管理提供理论支撑。 展开更多
关键词 安全工程 天然气管道 水平定向钻载荷 有限元模拟 极端梯度提升 树结构parzen估计器优化
原文传递
Machine learning and Bayesian optimization for performance prediction of proton-exchange membrane fuel cells
6
作者 Soufian Echabarri Phuc Do +1 位作者 Hai-Canh Vu Bastien Bornand 《Energy and AI》 EI 2024年第3期98-112,共15页
Proton-exchange membrane fuel cells (PEMFCs) are critical components of zero-emission electro-hydrogen generators. Accurate performance prediction is vital to the optimal operation management and preventive maintenanc... Proton-exchange membrane fuel cells (PEMFCs) are critical components of zero-emission electro-hydrogen generators. Accurate performance prediction is vital to the optimal operation management and preventive maintenance of these generators. Polarization curve remains one of the most important features representing the performance of PEMFCs in terms of efficiency and durability. However, predicting the polarization curve is not trivial as PEMFCs involve complex electrochemical reactions that feature multiple nonlinear relationships between the operating variables as inputs and the voltage as outputs. Herein, we present an artificial-intelligence-based approach for predicting the PEMFCs’ performance. In that way, we propose first an explainable solution for selecting the relevant features based on kernel principal component analysis and mutual information. Then, we develop a machine learning approach based on XGBRegressor and Bayesian optimization to explore the complex features and predict the PEMFCs’ performance. The performance and the robustness of the proposed machine learning based prediction approach is tested and validated through a real industrial dataset including 10 PEMFCs. Furthermore, several comparison studies with XGBRegressor and the two popular machine learning-based methods in predicting PEMFC performance, such as artificial neural network (ANN) and support vector machine regressor (SVR) are also conducted. The obtained results show that the proposed approach is more robust and outperforms the two conventional methods and the XGBRegressor for all the considered PEMFCs. Indeed, according to the coefficient of determination criterion, the proposed model gains an improvement of 6.35%, 6.8%, and 4.8% compared with ANN, SVR, and XGBRegressor respectively. 展开更多
关键词 Proton-exchange membrane fuel cell HYDROGEN Machine learning XGBRegressor tree-structured parzen estimator Polarization curve Performance prediction
在线阅读 下载PDF
供应链并发协商粒子群优化模型研究 被引量:2
7
作者 武玉英 饶毓书 蒋国瑞 《计算机工程与应用》 CSCD 北大核心 2016年第4期229-233,260,共6页
针对供应链企业之间的产销协同问题,将多Agent技术运用于二级供应链中,建立一种不完全信息约束下的并发协商模型。基于粒子群优化的协调策略可以在协商过程中更新协商Agents信念值进而支持连续协商。仿真结果表明此模型的可行性和有效性... 针对供应链企业之间的产销协同问题,将多Agent技术运用于二级供应链中,建立一种不完全信息约束下的并发协商模型。基于粒子群优化的协调策略可以在协商过程中更新协商Agents信念值进而支持连续协商。仿真结果表明此模型的可行性和有效性,与其他并发协商模型相比,该模型在协商结果效用、协商时间、协商成功率方面具有优势。 展开更多
关键词 并发协商 粒子群优化 parzen窗估计 多AGENT 供应链
在线阅读 下载PDF
Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease 被引量:1
8
作者 Temidayo Oluwatosin Omotehinwa David Opeoluwa Oyewola Ervin Gubin Moung 《Informatics and Health》 2024年第2期70-81,共12页
Background:Coronary heart disease(CHD)remains a prominent cause of mortality globally,necessitating early and accurate detection methods.Traditional diagnostic approaches can be invasive,costly,and time-consuming,nece... Background:Coronary heart disease(CHD)remains a prominent cause of mortality globally,necessitating early and accurate detection methods.Traditional diagnostic approaches can be invasive,costly,and time-consuming,necessitating the need for more efficient alternatives.This aimed to optimize the Light Gradient-Boosting Machine(LightGBM)algorithm to enhance its performance and accuracy in the early detection of CHD,providing a reliable,cost-effective,and non-invasive diagnostic tool.Methods:The Framingham Heart Study(FHS)dataset publicly available on Kaggle was used in this study.Multiple Imputations by Chained Equations(MICE)were applied separately to the training and testing sets to handle missing data.Borderline-SMOTE(Synthetic Minority Over-sampling Technique)was used on the training set to balance the dataset.The LightGBM algorithm was selected for its efficiency in classification tasks,and Bayesian Optimization with Tree-structured Parzen Estimator(TPE)was employed to fine-tune its hyperparameters.The optimized LightGBM model was trained and evaluated using metrics such as accuracy,precision,and AUC-ROC on the test set,with cross-validation to ensure robustness and generalizability.Findings:The optimized LightGBM model showed significant improvement in early CHD detection.The baseline LightGBM model with dropped missing values had an accuracy of 0.8333,sensitivity of 0.1081,precision of 0.3429,F1 score of 0.1644,and AUC of 0.6875.With MICE imputation,performance improved to an accuracy of 0.9399,sensitivity of 0.6693,precision of 0.9043,F1 score of 0.7692,and AUC of 0.9457.The combined approach of Borderline-SMOTE,MICE imputation,and TPE for LightGBM achieved an accuracy of 0.9882,sensitivity of 0.9370,precision of 0.9835,F1 score of 0.9597,and AUC of 0.9963,indicating a highly effective and robust model.Interpretation:The optimized model demonstrated outstanding performance in early CHD detection.The study’s strengths include its comprehensive approach to addressing missing data and class imbalance and the fine-tuning of hyperparameters through Bayesian Optimization.However,there is a need to test with other datasets for its generalizability to be well-established.This study provides a strong framework for early CHD detection,improving clinical practice by allowing for more precise and dependable diagnostics and effective interventions. 展开更多
关键词 Clinical decision making Coronary heart disease Light gradient-boosting machine Machine learning MICE tree-structured parzen estimator
暂未订购
Impact of Autotuned Fully Connected Layers on Performance of Self-supervised Models for Image Classification
9
作者 Jaydeep Kishore Snehasis Mukherjee 《Machine Intelligence Research》 EI CSCD 2024年第6期1201-1213,共13页
With the recent advancements of deep learning-based methods in image classification,the requirement of a huge amount of training data is inevitable to avoid overfitting problems.Moreover,supervised deep learning model... With the recent advancements of deep learning-based methods in image classification,the requirement of a huge amount of training data is inevitable to avoid overfitting problems.Moreover,supervised deep learning models require labelled datasets for train-ing.Preparing such a huge amount of labelled data requires considerable human effort and time.In this scenario,self-supervised models are becoming popular because of their ability to learn even from unlabelled datasets.However,the efficient transfer of knowledge learned by self-supervised models into a target task,is an unsolved problem.This paper proposes a method for the efficient transfer of know-ledge learned by a self-supervised model,into a target task.Hyperparameters such as the number of layers,the number of units in each layer,learning rate,and dropout are automatically tuned in these fully connected(FC)layers using a Bayesian optimization technique called the tree-structured parzen estimator(TPE)approach algorithm.To evaluate the performance of the proposed method,state-of-the-art self-supervised models such as SimClr and SWAV are used to extract the learned features.Experiments are carried out on the CIFAR-10,CIFAR-100,and Tiny ImageNet datasets.The proposed method outperforms the baseline approach with margins of 2.97%,2.45%,and 0.91%for the CIFAR-100,Tiny ImageNet,and CIFAR-10 datasets,respectively. 展开更多
关键词 Neural architecture search AUTOTUNING self-supervised learning hyperparameter optimization tree-structured parzen estimator(TPE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部