Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analy...Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.展开更多
The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg sou...The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.展开更多
Annual tree rings are widely recognized as valuable tools for quantifying and reconstructing historical forest disturbances.However,the influence of climate can complicate the detection of disturbance signals,leading ...Annual tree rings are widely recognized as valuable tools for quantifying and reconstructing historical forest disturbances.However,the influence of climate can complicate the detection of disturbance signals,leading to limited accuracy in existing methods.In this study,we propose a random under-sampling boosting(RUB)classifier that integrates both tree-ring and climate variables to enhance the detection of forest insect outbreaks.The study focused on 32 sites in Alberta,Canada,which documented insect outbreaks from 1939 to 2010.Through thorough feature engineering,model development,and tenfold cross-validation,multiple machine learning(ML)models were constructed.These models used ring width indices(RWIs)and climate variables within an 11-year window as input features,with outbreak and non-outbreak occurrences as the corresponding output variables.Our results reveal that the RUB model consistently demonstrated superior overall performance and stability,with an accuracy of 88.1%,which surpassed that of the other ML models.In addition,the relative importance of the feature variables followed the order RWIs>mean maximum temperature(Tmax)from May to July>mean total precipita-tion(Pmean)in July>mean minimum temperature(Tmin)in October.More importantly,the dfoliatR(an R package for detecting insect defoliation)and curve intervention detec-tion methods were inferior to the RUB model.Our findings underscore that integrating tree-ring width and climate vari-ables as predictors in machine learning offers a promising avenue for enhancing the accuracy of detecting forest insect outbreaks.展开更多
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor...Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.展开更多
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered...The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.展开更多
Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer charact...Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free r...BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical...ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.展开更多
High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding d...High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)tran...The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.展开更多
The rapeseed,as the second oilseed crop in China,is an important source of edible oil.Reasonable planting density can improve rapeseed production efficiency,and indirectly increase farmers'the production enthusias...The rapeseed,as the second oilseed crop in China,is an important source of edible oil.Reasonable planting density can improve rapeseed production efficiency,and indirectly increase farmers'the production enthusiasm of planting rapeseed.To gain a more comprehensive understanding of the study on effect of rapeseed yield to planting density,this article reviews the effect on planting density to yield in rapeseed,including the influences of the interaction between cultivation factors(variety,sowing period,and fertilization),the impact of plant density to lodging resistance and growth and development(biological characteristics,agronomic characteristics,yield traits,and quality tracts),and planting density and the relationship between light and planting density,are reviewed.The lodging resistance of oilseed rape and population yield of different rape varieties can be improved by choosing the appropriate sowing date and fertilizer application,and give full play to the rational utilization of resources and the maximization of benefits.The oilseed rape can make rational use of light and nutrients,which is conducive to dry matter accumulation and yield improvement,with proper planting density.This review will provide a theoretical basis and practical support for rapeseed planting,management,and mechanized production.展开更多
The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the ...The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the plasma sheath can be challenging.Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles.In this work,the relationship between electromagnetic wave attenuation and electron density is deduced theoretically.The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density.This result is used to predict the electron density profile.Furthermore,the average electron density is obtained using a back-propagation neural network algorithm.Finally,the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth.Compared to traditional probe measurement methods,the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment.展开更多
Monolayer vanadium ditelluride(VTe_(2))exhibits a 2√3×2√3 charge-density-wave(CDW)order intertwined with a Mott-insulating state.However,the physical mechanisms driving the emergence of the CDW order and the Mo...Monolayer vanadium ditelluride(VTe_(2))exhibits a 2√3×2√3 charge-density-wave(CDW)order intertwined with a Mott-insulating state.However,the physical mechanisms driving the emergence of the CDW order and the Mott-insulating state are still not well understood.In this study,we systematically investigate the electronic band structure,phonon dispersion,and electron-phonon coupling(EPC)of monolayer VTe_(2)under applied biaxial strain.Our results reveal that the 2√3×2√3 CDW phase is metastable in free-standing monolayer VTe_(2)but becomes stabilized under compressive strain below ε=-2%.The formation of the CDW order originates predominantly from strong EPC,rather than from Fermi-surface nesting.The narrowing of the bandwidth due to the CDW order,combined with correlation effects associated with the V3d orbitals,collectively drive the system into a Mott-insulating state.Furthermore,we find that tensile strain suppresses the CDW order and induces a superconducting state above a critical strain threshold(ε=2%).These findings enhance our understanding of correlation physics in monolayer VTe_(2)and provide a pathway for strain-engineered manipulation of quantum phases in two-dimensional transition-metal dichalcogenides.展开更多
In the evaluation of cementing quality,quantitatively assessing cement density is crucial along with identifying the cementation degree at the interface using acoustic logging.While the 137Cs-based formation density l...In the evaluation of cementing quality,quantitatively assessing cement density is crucial along with identifying the cementation degree at the interface using acoustic logging.While the 137Cs-based formation density logging method is well-suited for density calculation,its reliance on open-hole environmental measurements poses challenges when inspecting cement density.This work focuses on the quantitative calculation of cement density while considering the radioactive hazards to the environment caused by 137Cs source.The proposed approach utilizes a measurement system consisting of an X-Ray source and four gamma detectors.The gamma spectrum characteristics of each detector are analyzed,and the energy spectrum recorded by each detector is distinguished by different energy windows.A forward model is established to relate the gamma counts of each energy window to the formation and cement parameters.By employing a regularized Newton's method based on optimization technique,cement density can be calculated with a controllable error margin of within 0.015 g/cm^(3).Furthermore,even though X-Ray detection has lower sensitivity to formation parameters compared to 137Cs,this method is capable of estimating formation density.Overall,the proposed approach enables the quantitative calculation of cement density and semi-quantitative calculation of formation density,therefore is of significance to the comprehensive evaluation of cementing quality.展开更多
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
基金Supported by Natural Science Foundation of China(41275120,41271120,41301041)Strategic Science and Technology Planning Project of Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences(2012ZD001)~~
文摘Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.
基金supported by the Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxmX0063)the National Natural Science Foundation of China(No.41977272)。
文摘The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.
基金supported by the Xinjiang Regional Collaborative Innovation Project(2022E01045)Zhejiang University(108000*1942222R1).
文摘Annual tree rings are widely recognized as valuable tools for quantifying and reconstructing historical forest disturbances.However,the influence of climate can complicate the detection of disturbance signals,leading to limited accuracy in existing methods.In this study,we propose a random under-sampling boosting(RUB)classifier that integrates both tree-ring and climate variables to enhance the detection of forest insect outbreaks.The study focused on 32 sites in Alberta,Canada,which documented insect outbreaks from 1939 to 2010.Through thorough feature engineering,model development,and tenfold cross-validation,multiple machine learning(ML)models were constructed.These models used ring width indices(RWIs)and climate variables within an 11-year window as input features,with outbreak and non-outbreak occurrences as the corresponding output variables.Our results reveal that the RUB model consistently demonstrated superior overall performance and stability,with an accuracy of 88.1%,which surpassed that of the other ML models.In addition,the relative importance of the feature variables followed the order RWIs>mean maximum temperature(Tmax)from May to July>mean total precipita-tion(Pmean)in July>mean minimum temperature(Tmin)in October.More importantly,the dfoliatR(an R package for detecting insect defoliation)and curve intervention detec-tion methods were inferior to the RUB model.Our findings underscore that integrating tree-ring width and climate vari-ables as predictors in machine learning offers a promising avenue for enhancing the accuracy of detecting forest insect outbreaks.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0403305)National Natural Science Foundation of China(32101845)+1 种基金the National Key Research and Development Program of China(2023YFE0105000)the China Agriculture Research System(CARS-04).
文摘Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.
基金National Natural Science Foundation of China(52104294)Fundamental Research Funds for the Central Universities(FRF-TP-19-079A1)。
文摘The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.
文摘Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
文摘BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金National Defense Science and Technology Project Management Center(2021-JCJQ-JJ-0092)。
文摘ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.
文摘High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.
基金supported by the National Key Research and Development Projects of China(Grant Nos.2023YFA1406103,2024YFA1611302,2024YFA1409200,and 2022YFA1403402)the National Natural Science Foundation of China(Grant Nos.12374142,12304170,12025408,12404179,and U23A6003)+2 种基金Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF005)the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2024PG0003)supported by the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.
基金Supported by Analysis on Oil Synthesis Process of NAPA Rapeseed by cDNA-AFLP and Proteomics(2018J01713).
文摘The rapeseed,as the second oilseed crop in China,is an important source of edible oil.Reasonable planting density can improve rapeseed production efficiency,and indirectly increase farmers'the production enthusiasm of planting rapeseed.To gain a more comprehensive understanding of the study on effect of rapeseed yield to planting density,this article reviews the effect on planting density to yield in rapeseed,including the influences of the interaction between cultivation factors(variety,sowing period,and fertilization),the impact of plant density to lodging resistance and growth and development(biological characteristics,agronomic characteristics,yield traits,and quality tracts),and planting density and the relationship between light and planting density,are reviewed.The lodging resistance of oilseed rape and population yield of different rape varieties can be improved by choosing the appropriate sowing date and fertilizer application,and give full play to the rational utilization of resources and the maximization of benefits.The oilseed rape can make rational use of light and nutrients,which is conducive to dry matter accumulation and yield improvement,with proper planting density.This review will provide a theoretical basis and practical support for rapeseed planting,management,and mechanized production.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.242300420634)the Cultivative Plan of Henan University of Technology(Grant No.2024PYJH035)+3 种基金the Research Foundation for Advanced Talents of Henan University of Technology(Grant Nos.2022BS067 and 2022BS068)the National Natural Science Foundation of China(Grant No.62301211)the Key Research and Development and Promotion Special Project(Science and Technology Research)in Henan Province,China(Grant No.232102211068)the Innovative Funds Plan of Henan University of Technology(Grant No.2022ZKCJ15)。
文摘The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the plasma sheath can be challenging.Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles.In this work,the relationship between electromagnetic wave attenuation and electron density is deduced theoretically.The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density.This result is used to predict the electron density profile.Furthermore,the average electron density is obtained using a back-propagation neural network algorithm.Finally,the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth.Compared to traditional probe measurement methods,the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403203)。
文摘Monolayer vanadium ditelluride(VTe_(2))exhibits a 2√3×2√3 charge-density-wave(CDW)order intertwined with a Mott-insulating state.However,the physical mechanisms driving the emergence of the CDW order and the Mott-insulating state are still not well understood.In this study,we systematically investigate the electronic band structure,phonon dispersion,and electron-phonon coupling(EPC)of monolayer VTe_(2)under applied biaxial strain.Our results reveal that the 2√3×2√3 CDW phase is metastable in free-standing monolayer VTe_(2)but becomes stabilized under compressive strain below ε=-2%.The formation of the CDW order originates predominantly from strong EPC,rather than from Fermi-surface nesting.The narrowing of the bandwidth due to the CDW order,combined with correlation effects associated with the V3d orbitals,collectively drive the system into a Mott-insulating state.Furthermore,we find that tensile strain suppresses the CDW order and induces a superconducting state above a critical strain threshold(ε=2%).These findings enhance our understanding of correlation physics in monolayer VTe_(2)and provide a pathway for strain-engineered manipulation of quantum phases in two-dimensional transition-metal dichalcogenides.
基金support of the National Natural Science Foundation of China(U23B20151 and 52171253)National Science Foundation for Young Scientists of Sichuan(2025ZNSFSC1168).
文摘In the evaluation of cementing quality,quantitatively assessing cement density is crucial along with identifying the cementation degree at the interface using acoustic logging.While the 137Cs-based formation density logging method is well-suited for density calculation,its reliance on open-hole environmental measurements poses challenges when inspecting cement density.This work focuses on the quantitative calculation of cement density while considering the radioactive hazards to the environment caused by 137Cs source.The proposed approach utilizes a measurement system consisting of an X-Ray source and four gamma detectors.The gamma spectrum characteristics of each detector are analyzed,and the energy spectrum recorded by each detector is distinguished by different energy windows.A forward model is established to relate the gamma counts of each energy window to the formation and cement parameters.By employing a regularized Newton's method based on optimization technique,cement density can be calculated with a controllable error margin of within 0.015 g/cm^(3).Furthermore,even though X-Ray detection has lower sensitivity to formation parameters compared to 137Cs,this method is capable of estimating formation density.Overall,the proposed approach enables the quantitative calculation of cement density and semi-quantitative calculation of formation density,therefore is of significance to the comprehensive evaluation of cementing quality.