森林遥感影像数据在采集过程中会因为光照的影响产生阴影区域,为了解决这些阴影区域对单棵树木检测的干扰问题,该研究在快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster RCNN)目标检测框架基础上,提出基于生...森林遥感影像数据在采集过程中会因为光照的影响产生阴影区域,为了解决这些阴影区域对单棵树木检测的干扰问题,该研究在快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster RCNN)目标检测框架基础上,提出基于生成对抗网络的抗阴影树木检测方法(Generative Adversarial Based Faster Region Convolutional Neural Networks,GA-Faster RCNN),通过采用基于对抗生成策略的树木生成器,提高分类网络对树木信息的敏感度,降低阴影的干扰。该研究对3块树木阴影与郁闭度各不相同的测试样地高分遥感影像进行了树木检测试验,并与现存的3种算法进行了对比。结果显示,基于生成对抗网络的抗阴影干扰树木检测方法在3块样地的综合性能指标F1值分别达到了78.4%、91.6%和81.7%,均高于另外3种算法,并且树木识别准确率比现有方法有了明显的提高,漏检数和误检数也均明显减少。此外,在采用不同特征提取网络时该算法依然能保持其检测的稳定性。研究结果表明通过对抗生成训练策略学习表征树木的最少特征信息可有效降低阴影对树木检测的干扰。展开更多
大尺度高精度山区河流信息提取是我国干旱区水资源开发利用的关键技术,而利用遥感影像提取水资源信息存在水体与山区阴影难以区分的瓶颈。以GF-1号卫星2 m分辨率全色波段影像和8 m分辨率多光谱影像为数据源,选取新疆特克斯河流域巴喀勒...大尺度高精度山区河流信息提取是我国干旱区水资源开发利用的关键技术,而利用遥感影像提取水资源信息存在水体与山区阴影难以区分的瓶颈。以GF-1号卫星2 m分辨率全色波段影像和8 m分辨率多光谱影像为数据源,选取新疆特克斯河流域巴喀勒克水库为研究区,提出改进的阴影水体指数法(modified shade water index,MSWI)进行水体信息提取;同时运用单波段阈值法、NDWI法、单波段法与阴影水体指数法(shade water indes,SWI)相结合的决策树分类法(简称SWI)以及单波段法与MSWI相结合的决策树分类法(简称MSWI)分别对研究区水体信息进行提取,并进行了对比分析。研究结果表明,前2种方法与SWI和MSWI法相比,效果稍差;而SWI和MSWI法分类效果较好,其中MSWI比SWI法分类总精度高0.94%,提高了高分辨率遥感影像的解译精度,可为国产高分系列卫星影像在干旱区水资源信息提取中的应用提供技术支持。展开更多
文摘森林遥感影像数据在采集过程中会因为光照的影响产生阴影区域,为了解决这些阴影区域对单棵树木检测的干扰问题,该研究在快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster RCNN)目标检测框架基础上,提出基于生成对抗网络的抗阴影树木检测方法(Generative Adversarial Based Faster Region Convolutional Neural Networks,GA-Faster RCNN),通过采用基于对抗生成策略的树木生成器,提高分类网络对树木信息的敏感度,降低阴影的干扰。该研究对3块树木阴影与郁闭度各不相同的测试样地高分遥感影像进行了树木检测试验,并与现存的3种算法进行了对比。结果显示,基于生成对抗网络的抗阴影干扰树木检测方法在3块样地的综合性能指标F1值分别达到了78.4%、91.6%和81.7%,均高于另外3种算法,并且树木识别准确率比现有方法有了明显的提高,漏检数和误检数也均明显减少。此外,在采用不同特征提取网络时该算法依然能保持其检测的稳定性。研究结果表明通过对抗生成训练策略学习表征树木的最少特征信息可有效降低阴影对树木检测的干扰。
文摘大尺度高精度山区河流信息提取是我国干旱区水资源开发利用的关键技术,而利用遥感影像提取水资源信息存在水体与山区阴影难以区分的瓶颈。以GF-1号卫星2 m分辨率全色波段影像和8 m分辨率多光谱影像为数据源,选取新疆特克斯河流域巴喀勒克水库为研究区,提出改进的阴影水体指数法(modified shade water index,MSWI)进行水体信息提取;同时运用单波段阈值法、NDWI法、单波段法与阴影水体指数法(shade water indes,SWI)相结合的决策树分类法(简称SWI)以及单波段法与MSWI相结合的决策树分类法(简称MSWI)分别对研究区水体信息进行提取,并进行了对比分析。研究结果表明,前2种方法与SWI和MSWI法相比,效果稍差;而SWI和MSWI法分类效果较好,其中MSWI比SWI法分类总精度高0.94%,提高了高分辨率遥感影像的解译精度,可为国产高分系列卫星影像在干旱区水资源信息提取中的应用提供技术支持。