Roots play a key role in ecosystem functioning as they transfer water and nutrients from soil to plants. Traditional methods for measuring roots are labor-intensive and destructive in nature, which limits quantitative...Roots play a key role in ecosystem functioning as they transfer water and nutrients from soil to plants. Traditional methods for measuring roots are labor-intensive and destructive in nature, which limits quantitative and repeatable assessments in long- term research. Ground-penetrating radar (GPR) provides a non-destructive method to measure plant roots. Based on the superiority of GPR with 2 GHz frequency, we developed a new, practical method to estimate root biomass. First, average root matter density was measured by collecting a small number of root samples. Second, under controlled, experimental conditions in a sandy area, a root diameter estimation model base on GPR was developed from which root diameter was estimated. Third, root volume was calculated using the estimated root diameter and assuming the shape of roots to be cylindrical. Finally, root biomass was estimated by averaging root matter density and root volume. Results of this study suggest the following: (1) the density of coarse roots with diameters greater than 0.5 cm is relatively uniform; (2) a new wave shape parameter, AT, extracted from profile data of 2 GHz frequency antenna is independent of root depth, thus enabling the construction of a root diameter estimation model with high accuracy; and (3) results of a field experiment demonstrated the GPR-based method to be feasible and effective in estimating biomass of coarse roots. These findings are helpful for improving GPR-based root diameter and biomass estimation models and suggest the potential of GPR data in studying root systems.展开更多
Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined us...Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined using the exposed roots of the trees.For this purpose,8 reaches of Lavij Stream were investigated.To determine the first year of root exposure,two sets of macroscopic and microscopic indicators were utilized.Accordingly,the rate of the stream bank erosion was estimated.The results were analyzed by using statistical test,which showed insignificant differences between the two groups of indicators.Due to its more abundance(frequency)on the margins and easy detection of its root through the exposure(macroscopic and microscopic)indicators,Alnus glutinosa(black alder)species could be more easily and accurately analyzed as compared with any other tree species in the region.The mean erosion rate of the riverbank using the extruded roots was estimated to be 0.08 m/yr.The hydrological analyses of flood flows showed that 95%of Lavij Stream bank erosion was caused by the river bank full discharges with a return period of 1-3 years.展开更多
Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and obser...Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broadqeaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.展开更多
The complex behaviors of expansive soils,particularly their volumetric changes driven by moisture variations,pose significant challenges in urban geotechnical engineering.Although vegetation-induced moisture changes a...The complex behaviors of expansive soils,particularly their volumetric changes driven by moisture variations,pose significant challenges in urban geotechnical engineering.Although vegetation-induced moisture changes are known to affect ground movement,quantitative characterization of tree–soil interactions remains limited due to insufficient field data and unclear relationships between tree water uptake and soil response.This study investigates the mechanical behavior of expansive clay soils influenced by two Lophostemon confertus samples during a 14-month field monitoring program in Melbourne,Australia.The research methodology integrates measurements of soil displacement,total soil suction,moisture content,and tree water consumption through instrumentation and monitoring systems.Field measurements suggest that tree roots reached the limits of their water extraction capacity when total soil suction exceeded 2880 kPa within the active root zone.The spatial extent of tree-induced soil desiccation reached 0.6–0.7 times the tree height laterally and penetrated to depths of 2.5–3.3 m vertically.The mature sample,with an 86%greater crown area and a threefold larger sapwood area,exhibited 142%higher water consumption(35 kL),demonstrating the scalability of tree–soil interaction mechanisms.A multiple linear regression model was developed to quantify the coupled relationships between soil movement and key variables,achieving a high adjusted R2 value of 0.97,which provides engineers and practitioners with a practical tool for estimating ground movement near trees.These findings offer valuable insights for infrastructure design in tree-adjacent environments and can inform computational models and design codes to enable more accurate site assessments and sustainable urban development.展开更多
Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of ...Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of the Sheanut tree has not been fully realized due to the difficulty involved in its domestication. This difficulty in vegetatively propagating sheanut trees has greatly hindered its cultivation and the realization of its true economic potential. Two experiments were conducted to investigate the effects of rooting media and varying indole 3-butyric acid (IBA) concentrations on adventitious root formation in cuttings taken from coppiced sheanut trees. Results indicated that 3000 ppm produced significantly (p 0.05) better rooting (57.5%) than 5000 ppm (30%), 7000 ppm (45.0%) and the control (7.5%). Although the levels of soluble sugars (SS) and total free phenols (TFP) in the cutting were significantly (p 0.05) higher at the end of the experiment (after IBA treatment) compared to the start (prior to IBA treatment), the SS and TFP trends observed did not clearly explain the rooting differences found between the IBA levels investigated. Callus formation was significantly (p 0.05) higher (35.0%) in the control (no IBA). Generally, callus formation decreased with increasing IBA concentration. In the rooting media experiment, rooting was significantly (p 0.05) higher in the rice husk medium (35.0%) compared to that in the palm fiber (18.3%), saw dust (14.1%) and top soil (16.7%) media.展开更多
The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage syst...The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.展开更多
The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was ...The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.展开更多
The article investigates some properties of square root of T3 tree’s nodes. It first proves several inequalities that are helpful to estimate the square root of a node, and then proves several theorems to describe th...The article investigates some properties of square root of T3 tree’s nodes. It first proves several inequalities that are helpful to estimate the square root of a node, and then proves several theorems to describe the distribution of the square root of the nodes on T3 tree.展开更多
Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component i...Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component in mixed evergreen forests of California and Oregon, USA. Tanoak re-sprouts from belowground lignotubers after disturbances, and stores an unknown amount of carbon in coarse roots underground. We sought to ascribe explanatory nomenclature to roots’ morphological features and to identify models describing tanoak root morphology. Twelve tanoak root systems were excavated, dissected, and measured. Roots tapered according to their circumference and location. Larger roots closer to the lignotuber (located at the base of the tree stem) tapered more rapidly per unit of length. Tanoak roots forked frequently. Root cross-sectional area was preserved after forking events (i.e., the sum of cross-sectional areas for smaller roots on one side of the fork correlated with the adjoining large root). Occurrence and quantity of root branches (small roots branching laterally from larger roots) was dependent upon length of the source root segment. Our models of tanoak root morphology are designed to be organized together to estimate biomass of any segment or collection of lateral roots (e.g., roots lost/missed during excavation, or in lieu of destructive sampling), given root diameter at a known distance from the lignotuber. The taper model gives distal- and proximal-end diameters for calculation of volume for segments of root tapering between forks. Frequency of forking and branching can also be predicted. Summing the predicted mass of each lateral root segment, branch, and forked segment would produce an estimate of mass for a contiguous network of lateral roots.展开更多
As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a nume...As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.展开更多
Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles ...Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles and techniques of plant propagation and improvement. Microstructures and fluctuations of phytohormones in the adventitious rooting were studied with the etiolated soft- wood shoots of Paeonia suffkuticosa 'Yinfen Jinlin'. There are no pre-primordia in the shoots of the cultivar. Adventitious roots are produced in five stages: shoot selection, primordium initiation, primordium growth, conducting tissue differentiation and root protru- sion. Primordia initiated in the cortex. The contents of the endogenous hormones, IAA, ABA and GA, were 5.842, 0.873 and 1.043 nmol·g^-1 FW on the bases of shoots, respectively. CTKs which included isopentenyl adenine (iPA), zeatin riboside (ZR) and dihy- drozeatin riboside (DHZR) were 0.949, 0.695 and 2.034 nmol·g^-1 FW, respectively. DHZR is active among CTKs. The ratio of IAA to GA, CTK and ABA clearly increased at the stage of primordium initiation, while they showed low levels at the stages of primor- dium growth. The ratios were restored at the shoot levels at the stage of root protrusion. IBA provoked primordia initiation in the cortex, the vascular cambium, the pith and even in the callus induced on the base of shoots. ]AA levels in the treated shoots increased gradually to its highest level (three times of control) at the stage of conducting tissue differentiation. The ratios of IAA to GA, CTK and ABA clearly decreased at the stage of primordium initiation. The ratio of IAA to ABA is regulated at 10:1.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 41001239)the Program for New Century Excellent Talents in University,Ministry of Education of China
文摘Roots play a key role in ecosystem functioning as they transfer water and nutrients from soil to plants. Traditional methods for measuring roots are labor-intensive and destructive in nature, which limits quantitative and repeatable assessments in long- term research. Ground-penetrating radar (GPR) provides a non-destructive method to measure plant roots. Based on the superiority of GPR with 2 GHz frequency, we developed a new, practical method to estimate root biomass. First, average root matter density was measured by collecting a small number of root samples. Second, under controlled, experimental conditions in a sandy area, a root diameter estimation model base on GPR was developed from which root diameter was estimated. Third, root volume was calculated using the estimated root diameter and assuming the shape of roots to be cylindrical. Finally, root biomass was estimated by averaging root matter density and root volume. Results of this study suggest the following: (1) the density of coarse roots with diameters greater than 0.5 cm is relatively uniform; (2) a new wave shape parameter, AT, extracted from profile data of 2 GHz frequency antenna is independent of root depth, thus enabling the construction of a root diameter estimation model with high accuracy; and (3) results of a field experiment demonstrated the GPR-based method to be feasible and effective in estimating biomass of coarse roots. These findings are helpful for improving GPR-based root diameter and biomass estimation models and suggest the potential of GPR data in studying root systems.
文摘Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined using the exposed roots of the trees.For this purpose,8 reaches of Lavij Stream were investigated.To determine the first year of root exposure,two sets of macroscopic and microscopic indicators were utilized.Accordingly,the rate of the stream bank erosion was estimated.The results were analyzed by using statistical test,which showed insignificant differences between the two groups of indicators.Due to its more abundance(frequency)on the margins and easy detection of its root through the exposure(macroscopic and microscopic)indicators,Alnus glutinosa(black alder)species could be more easily and accurately analyzed as compared with any other tree species in the region.The mean erosion rate of the riverbank using the extruded roots was estimated to be 0.08 m/yr.The hydrological analyses of flood flows showed that 95%of Lavij Stream bank erosion was caused by the river bank full discharges with a return period of 1-3 years.
基金Project supported by the National Natural Science Foundation of China (No. 30270282) and the Science Foundation of Guangdong Province (No. 003031), China
文摘Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broadqeaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.
基金funded by the Australian Research Council via the ARC Linkage(Grant No.LP16160100649).
文摘The complex behaviors of expansive soils,particularly their volumetric changes driven by moisture variations,pose significant challenges in urban geotechnical engineering.Although vegetation-induced moisture changes are known to affect ground movement,quantitative characterization of tree–soil interactions remains limited due to insufficient field data and unclear relationships between tree water uptake and soil response.This study investigates the mechanical behavior of expansive clay soils influenced by two Lophostemon confertus samples during a 14-month field monitoring program in Melbourne,Australia.The research methodology integrates measurements of soil displacement,total soil suction,moisture content,and tree water consumption through instrumentation and monitoring systems.Field measurements suggest that tree roots reached the limits of their water extraction capacity when total soil suction exceeded 2880 kPa within the active root zone.The spatial extent of tree-induced soil desiccation reached 0.6–0.7 times the tree height laterally and penetrated to depths of 2.5–3.3 m vertically.The mature sample,with an 86%greater crown area and a threefold larger sapwood area,exhibited 142%higher water consumption(35 kL),demonstrating the scalability of tree–soil interaction mechanisms.A multiple linear regression model was developed to quantify the coupled relationships between soil movement and key variables,achieving a high adjusted R2 value of 0.97,which provides engineers and practitioners with a practical tool for estimating ground movement near trees.These findings offer valuable insights for infrastructure design in tree-adjacent environments and can inform computational models and design codes to enable more accurate site assessments and sustainable urban development.
文摘Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of the Sheanut tree has not been fully realized due to the difficulty involved in its domestication. This difficulty in vegetatively propagating sheanut trees has greatly hindered its cultivation and the realization of its true economic potential. Two experiments were conducted to investigate the effects of rooting media and varying indole 3-butyric acid (IBA) concentrations on adventitious root formation in cuttings taken from coppiced sheanut trees. Results indicated that 3000 ppm produced significantly (p 0.05) better rooting (57.5%) than 5000 ppm (30%), 7000 ppm (45.0%) and the control (7.5%). Although the levels of soluble sugars (SS) and total free phenols (TFP) in the cutting were significantly (p 0.05) higher at the end of the experiment (after IBA treatment) compared to the start (prior to IBA treatment), the SS and TFP trends observed did not clearly explain the rooting differences found between the IBA levels investigated. Callus formation was significantly (p 0.05) higher (35.0%) in the control (no IBA). Generally, callus formation decreased with increasing IBA concentration. In the rooting media experiment, rooting was significantly (p 0.05) higher in the rice husk medium (35.0%) compared to that in the palm fiber (18.3%), saw dust (14.1%) and top soil (16.7%) media.
文摘The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.
基金support by the National Key Technologies R&D Program of China during the 11th Five-Year period(2006BAD09B09)Foundation of Shaanxi Province Education Committee,China (09JS073)+1 种基金the Specialdized Research Fund for the Doctoral Program of Higher Education,China (SRFDP200807181008)the Key Program of Baoji University of Arts and Sciences,China (ZK0846)
文摘The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.
文摘The article investigates some properties of square root of T3 tree’s nodes. It first proves several inequalities that are helpful to estimate the square root of a node, and then proves several theorems to describe the distribution of the square root of the nodes on T3 tree.
文摘Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component in mixed evergreen forests of California and Oregon, USA. Tanoak re-sprouts from belowground lignotubers after disturbances, and stores an unknown amount of carbon in coarse roots underground. We sought to ascribe explanatory nomenclature to roots’ morphological features and to identify models describing tanoak root morphology. Twelve tanoak root systems were excavated, dissected, and measured. Roots tapered according to their circumference and location. Larger roots closer to the lignotuber (located at the base of the tree stem) tapered more rapidly per unit of length. Tanoak roots forked frequently. Root cross-sectional area was preserved after forking events (i.e., the sum of cross-sectional areas for smaller roots on one side of the fork correlated with the adjoining large root). Occurrence and quantity of root branches (small roots branching laterally from larger roots) was dependent upon length of the source root segment. Our models of tanoak root morphology are designed to be organized together to estimate biomass of any segment or collection of lateral roots (e.g., roots lost/missed during excavation, or in lieu of destructive sampling), given root diameter at a known distance from the lignotuber. The taper model gives distal- and proximal-end diameters for calculation of volume for segments of root tapering between forks. Frequency of forking and branching can also be predicted. Summing the predicted mass of each lateral root segment, branch, and forked segment would produce an estimate of mass for a contiguous network of lateral roots.
文摘As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.
文摘Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles and techniques of plant propagation and improvement. Microstructures and fluctuations of phytohormones in the adventitious rooting were studied with the etiolated soft- wood shoots of Paeonia suffkuticosa 'Yinfen Jinlin'. There are no pre-primordia in the shoots of the cultivar. Adventitious roots are produced in five stages: shoot selection, primordium initiation, primordium growth, conducting tissue differentiation and root protru- sion. Primordia initiated in the cortex. The contents of the endogenous hormones, IAA, ABA and GA, were 5.842, 0.873 and 1.043 nmol·g^-1 FW on the bases of shoots, respectively. CTKs which included isopentenyl adenine (iPA), zeatin riboside (ZR) and dihy- drozeatin riboside (DHZR) were 0.949, 0.695 and 2.034 nmol·g^-1 FW, respectively. DHZR is active among CTKs. The ratio of IAA to GA, CTK and ABA clearly increased at the stage of primordium initiation, while they showed low levels at the stages of primor- dium growth. The ratios were restored at the shoot levels at the stage of root protrusion. IBA provoked primordia initiation in the cortex, the vascular cambium, the pith and even in the callus induced on the base of shoots. ]AA levels in the treated shoots increased gradually to its highest level (three times of control) at the stage of conducting tissue differentiation. The ratios of IAA to GA, CTK and ABA clearly decreased at the stage of primordium initiation. The ratio of IAA to ABA is regulated at 10:1.