Point-cloud data acquired using a terrestrial laser scanner play an important role in digital forestry research.Multiple scans are generally used to overcome occlusion effects and obtain complete tree structural infor...Point-cloud data acquired using a terrestrial laser scanner play an important role in digital forestry research.Multiple scans are generally used to overcome occlusion effects and obtain complete tree structural information.However,the placement of artificial reflectors in a forest with complex terrain for marker-based registration is time-consuming and difficult.In this study,an automatic coarse-to-fine method for the registration of pointcloud data from multiple scans of a single tree was proposed.In coarse registration,point clouds produced by each scan are projected onto a spherical surface to generate a series of two-dimensional(2D)images,which are used to estimate the initial positions of multiple scans.Corresponding feature-point pairs are then extracted from these series of 2D images.In fine registration,point-cloud data slicing and fitting methods are used to extract corresponding central stem and branch centers for use as tie points to calculate fine transformation parameters.To evaluate the accuracy of registration results,we propose a model of error evaluation via calculating the distances between center points from corresponding branches in adjacent scans.For accurate evaluation,we conducted experiments on two simulated trees and six real-world trees.Average registration errors of the proposed method were 0.026 m around on simulated tree point clouds,and 0.049 m around on real-world tree point clouds.展开更多
单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构...单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构较为简单的森林区域,通常通过考虑点云之间的空间关系,制定合适的判别准则来实现单木的分割。然而,针对结构复杂的森林,现有的单木分割算法研究相对较少。提出了一种融合核密度估计、数字表面模型和K-means聚类等方法的单木分割算法。研究结果表明:以甘肃省甘南藏族自治区为研究区,对西北云杉林进行单木分割时,该方法能够显著提高人工云杉林与天然云杉林的分割精度。与传统的K-means聚类单木分割算法相比,该方法的整体棵数查全率分别提高了32%和15%,查准率分别提高了51%和27%,分别达到了83%和89%的查全率,以及92%和55%的查准率。这一方法为机载LiDAR在森林生态应用中的进一步应用提供了新的技术支持,特别为复杂林型结构中的单木分割问题提供了一种高效、简便的解决方案。展开更多
基金funded by the Fundamental Research Funds for the Central Universities(No.2021ZY92)National Students'innovation and entrepreneurship training program(No.201710022076)the State Scholarship Fund from China Scholarship Council(CSC No.201806515050).
文摘Point-cloud data acquired using a terrestrial laser scanner play an important role in digital forestry research.Multiple scans are generally used to overcome occlusion effects and obtain complete tree structural information.However,the placement of artificial reflectors in a forest with complex terrain for marker-based registration is time-consuming and difficult.In this study,an automatic coarse-to-fine method for the registration of pointcloud data from multiple scans of a single tree was proposed.In coarse registration,point clouds produced by each scan are projected onto a spherical surface to generate a series of two-dimensional(2D)images,which are used to estimate the initial positions of multiple scans.Corresponding feature-point pairs are then extracted from these series of 2D images.In fine registration,point-cloud data slicing and fitting methods are used to extract corresponding central stem and branch centers for use as tie points to calculate fine transformation parameters.To evaluate the accuracy of registration results,we propose a model of error evaluation via calculating the distances between center points from corresponding branches in adjacent scans.For accurate evaluation,we conducted experiments on two simulated trees and six real-world trees.Average registration errors of the proposed method were 0.026 m around on simulated tree point clouds,and 0.049 m around on real-world tree point clouds.
文摘单木分割在森林结构分析、林木参数提取以及森林生物量反演中具有重要作用。激光雷达(Light Detection and Ranging,LiDAR)作为一种低成本、高效率的数据源,为森林单木分割研究提供了坚实的数据基础。目前的单木分割研究主要集中在结构较为简单的森林区域,通常通过考虑点云之间的空间关系,制定合适的判别准则来实现单木的分割。然而,针对结构复杂的森林,现有的单木分割算法研究相对较少。提出了一种融合核密度估计、数字表面模型和K-means聚类等方法的单木分割算法。研究结果表明:以甘肃省甘南藏族自治区为研究区,对西北云杉林进行单木分割时,该方法能够显著提高人工云杉林与天然云杉林的分割精度。与传统的K-means聚类单木分割算法相比,该方法的整体棵数查全率分别提高了32%和15%,查准率分别提高了51%和27%,分别达到了83%和89%的查全率,以及92%和55%的查准率。这一方法为机载LiDAR在森林生态应用中的进一步应用提供了新的技术支持,特别为复杂林型结构中的单木分割问题提供了一种高效、简便的解决方案。