Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations a...Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Viruses circulating in small mammals possess the potential to infect humans.Tree shrews are a group of small mammals inhabiting widely in forests and plantations,but studies on viruses in tree shrews are quite limited...Viruses circulating in small mammals possess the potential to infect humans.Tree shrews are a group of small mammals inhabiting widely in forests and plantations,but studies on viruses in tree shrews are quite limited.Herein,viral metagenomic sequencing was employed to detect the virome in the tissue and swab samples from seventy-six tree shrews that we collected in Yunnan Province.As the results,genomic fragments belonging to eighteen viral families were identified,thirteen of which contain mammalian viruses.Through polymerase chain reaction(PCR)and Sanger sequencing,twelve complete genomes were determined,including five parvoviruses,three torque teno viruses(TTVs),two adenoviruses,one pneumovirus,and one hepacivirus,together with three partial genomes,including two hepatitis E viruses and one paramyxovirus.Notably,the three TTVs,named TSTTV-HNU1,TSTTV-HNU2,and TSTTV-HNU3,may compose a new genus within the family Anelloviridae.Notably,TSParvoV-HNU5,one of the tree shrew parvoviruses detected,was likely to be a recombination of two murine viruses.Divergence time estimation further revealed the potential cross-species-transmission history of the tree shrew pneumovirus TSPneV-HNU1.Our study provides a comprehensive exploration of viral diversity in wild tree shrews,significantly enhancing our understanding of their roles as natural virus reservoirs.展开更多
Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Clim...Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.展开更多
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
In multicellular organisms,developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree(CLT).The reconstruction of the CLT has long been a major goal in...In multicellular organisms,developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree(CLT).The reconstruction of the CLT has long been a major goal in developmental biology and other related fields.Recent technological advancements,especially those in editable genomic barcodes and single-cell high-throughput sequencing,have sparked a new wave of experimental methods for reconstructing CLTs.Here we review the existing experimental approaches to the reconstruction of CLT,which are broadly categorized as either image-based or DNA barcode-based methods.In addition,we present a summary of the related literature based on the biological insight pro-vided by the obtained CLTs.Moreover,we discuss the challenges that will arise as more and better CLT data become available in the near future.Genomic barcoding-based CLT reconstructions and analyses,due to their wide applicability and high scalability,offer the potential for novel biological discoveries,especially those related to general and systemic properties of the developmental process.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb...Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.展开更多
In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab C...In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB4504101)the National Nat-ural Science Foundation of China(Grant No.22303022)the Anhui Province Innovation Plan for Science and Technology(Grant No.202423r06050002).
文摘Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金funded by the National Natural Science Foundation of China(No.U2002218)the Science and Technology Innovation Program of Hunan Province(2024RC1028)Hunan University(No.521119400156).
文摘Viruses circulating in small mammals possess the potential to infect humans.Tree shrews are a group of small mammals inhabiting widely in forests and plantations,but studies on viruses in tree shrews are quite limited.Herein,viral metagenomic sequencing was employed to detect the virome in the tissue and swab samples from seventy-six tree shrews that we collected in Yunnan Province.As the results,genomic fragments belonging to eighteen viral families were identified,thirteen of which contain mammalian viruses.Through polymerase chain reaction(PCR)and Sanger sequencing,twelve complete genomes were determined,including five parvoviruses,three torque teno viruses(TTVs),two adenoviruses,one pneumovirus,and one hepacivirus,together with three partial genomes,including two hepatitis E viruses and one paramyxovirus.Notably,the three TTVs,named TSTTV-HNU1,TSTTV-HNU2,and TSTTV-HNU3,may compose a new genus within the family Anelloviridae.Notably,TSParvoV-HNU5,one of the tree shrew parvoviruses detected,was likely to be a recombination of two murine viruses.Divergence time estimation further revealed the potential cross-species-transmission history of the tree shrew pneumovirus TSPneV-HNU1.Our study provides a comprehensive exploration of viral diversity in wild tree shrews,significantly enhancing our understanding of their roles as natural virus reservoirs.
基金supported by the Outstanding Action Plan of Chinese Sci-tech Journals(Grant No.OAP-C-077).
文摘Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
基金supported by the National Key Research and Development Program of China(2021YFF1200904,2021YFA1302500 to J.-R.Y.)the National Natural Science Foundation of China(32122022,31871320 to J.-R.Y.)by Science and Technology Planning Project of Guangdong Province,China(2014A030304053 to X.Z.).
文摘In multicellular organisms,developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree(CLT).The reconstruction of the CLT has long been a major goal in developmental biology and other related fields.Recent technological advancements,especially those in editable genomic barcodes and single-cell high-throughput sequencing,have sparked a new wave of experimental methods for reconstructing CLTs.Here we review the existing experimental approaches to the reconstruction of CLT,which are broadly categorized as either image-based or DNA barcode-based methods.In addition,we present a summary of the related literature based on the biological insight pro-vided by the obtained CLTs.Moreover,we discuss the challenges that will arise as more and better CLT data become available in the near future.Genomic barcoding-based CLT reconstructions and analyses,due to their wide applicability and high scalability,offer the potential for novel biological discoveries,especially those related to general and systemic properties of the developmental process.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202070002)the Guangxi Science and Technology Major Program(Grant No.GuikeAA23023007-2)+1 种基金the Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project(2024CXTD19)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010303)。
文摘Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.
文摘In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.