While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic...While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.展开更多
The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em...The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.展开更多
The main goal of this paper is to determine the effect of an extra dimension on a traversable wormhole. Here an earlier study by the author [Phys. Rev. D 98, 064041 (2018)] is extended in several significant ways. To ...The main goal of this paper is to determine the effect of an extra dimension on a traversable wormhole. Here an earlier study by the author [Phys. Rev. D 98, 064041 (2018)] is extended in several significant ways. To begin with, the extra spatial dimension is assumed to be time dependent, while the redshift and shape functions, as well as the extra dimension, are functions of both r and l, the respective radial and extra coordinates;the last of these is therefore a function of r, l, and t. The main objective is to determine the conditions that allow the throat of the wormhole to be threaded with ordinary matter (by respecting the null energy condition) and that the same conditions lead to a violation of the null energy condition in the fifth dimension, which is therefore responsible for sustaining the wormhole. The dependence of the extra dimension on l and t is subject to additional conditions that are subsequently analyzed in this paper. Finally, the extra dimension may be extremely small or even curled up.展开更多
Dark energy is typically the principal component needed for the traversability of wormholes(WH),as it provides the negative gravity effect required to keep the throat open.However,can this be achieved without dark ene...Dark energy is typically the principal component needed for the traversability of wormholes(WH),as it provides the negative gravity effect required to keep the throat open.However,can this be achieved without dark energy?It turns out that if we couple the trace of energy-momentum with the standard Einstein-Hilbert Lagrangian and utilize a specific equation of state(EoS),dark energy may be obviated.The Casimir stress energy is known to result in the violation of the null energy condition(NEC)on the energy momentum tensor.This phenomenon makes such an EoS an ideal candidate for generating traversable WH geometries.The laboratory proven phenomenon provides a natural mechanism to sustain an open WH throat without relying on dark energy.Therefore,we generate two classes of WH solutions using this in energy-momentum trace-coupling gravity.For the specific choice of the Casimir EoS relating the energy-momentum tensor components[Kar and Sahdev:Phys.Rev.D 52,2030(1995)]and different choices of redshift functions,we determine the WH geometry completely.The obtained WH solutions violate the NECs,and all qualitative constraints demanded for physically realizable WHs are satisfied.This is demonstrated via graphical plots for a suitably chosen range of coupling parameter values.Furthermore,our study investigates the repulsive effect of gravity,revealing that its presence leads to a negative deflection angle for photons traveling along null geodesics.Notably,we observe a consistent pattern of negative values for the deflection angle across all values of r_(0) in the three scenarios considered,thus indicating the clear manifestation of the repulsive gravity effect.All of this is possible without invoking the existence of dark energy.展开更多
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete ...In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze- Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2o confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z 〈 0.2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.展开更多
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske...To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design.展开更多
The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heig...The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction.展开更多
With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and po...With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and poor encryption efficiency.To enhance performance,this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors.The method begins by using SHA-384 to extract the hash value of the plaintext image,which is then processed to determine the chaotic system’s initial value and block size.The image is padded and divided into blocks for further processing.A novel two-dimensional infinite collapses hyperchaotic map(2DICHM)is employed to generate the intra-block scrambling sequence,while an improved variable Joseph traversal sequence is used for inter-block scrambling.After removing the padding,3D forward and backward shift diffusions,controlled by the 2D-ICHM sequences,are applied to the scrambled image,producing the ciphertext.Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy,anti-noise resilience,correlation coefficient,robustness,and encryption efficiency.展开更多
This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole...This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.展开更多
This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is us...This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is used in the scrambling and diffusion stages of the algorithm.Second,in the scrambling process,the image is initially confused by Josephus scrambling,and then the image is further confused by Arnold map.Finally,generated hyperchaos sequence and exclusive OR operation is used for the image to carry on the positive and reverse diffusion to change the pixel value of the image and further hide the effective information of the image.In addition,the information of the plaintext image is used to generate keys used in the algorithm,which increases the ability of resisting plaintext attack.Experimental results and security analysis show that the scheme can effectively hide plaintext image information according to the characteristics of medical images,and is resistant to common types of attacks.In addition,this scheme performs well in the experiments of robustness,which shows that the scheme can solve the problem of image damage in telemedicine.It has a positive significance for the future research.展开更多
Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal ba...Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal based query execution (RDF-LTE) approach, this paper discusses how the execution order of the triple pattern affects the query results and cost based on concrete SPARQL queries, and analyzes two properties of the web of linked data, missing backward links and missing contingency solution. Then three heuristic principles for logic query plan optimization, namely, the filtered basic graph pattern (FBGP) principle, the triple pattern chain principle and the seed URIs principle, are proposed. The three principles contribute to decrease the intermediate solutions and increase the types of queries that can be answered. The effectiveness and feasibility of the proposed approach is evaluated. The experimental results show that more query results can be returned with less cost, thus enabling users to develop the full potential of the web of linked data.展开更多
While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null...While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.展开更多
Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree n...Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.展开更多
To understand the physical meaning of phase time further more, we discuss the reflection phase time of quantum-particles passing though a potential well It is shown that the reflection phase time is equal to the trans...To understand the physical meaning of phase time further more, we discuss the reflection phase time of quantum-particles passing though a potential well It is shown that the reflection phase time is equal to the transmission phase time in value and negative under certain conditions for a square potential well by analyzing While quantum-particles passing through the potential well, we think that this course can be described only with the velocity of energy of quantum mechanics whether or not they are reflected or transmitted eventually展开更多
This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive t...This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive torque, which in turn can be used for traversability prediction, traction control, and performance optimization of a wheeled vehicle on unknown terrain. The proposed technique is based on the Newton Raphson method. An approximated form of a wheel-soil interaction model based on Composite Simpson's Rule is employed for this purpose. The key soil parameters to be identified are internal friction angle, shear deformation modulus, and lumped pressure-sinkage coefficient. The fourth parameter, cohesion, is not too relevant to vehicle drawbar pull, and is assigned an average value during the identification process. Identified parameters are compared with known values, and shown to be in agreement. The identification method is relatively fast and robust. The identified soil parameters can effectively be used to predict drawbar pull and wheel drive torque with good accuracy. The use of identified soil parameters to design a traversability criterion for wheeled vehicles traversing unknown terrain is presented.展开更多
ZK60B(Mg-6%Zn-0.6%Zr)alloy joints fabricated by bobbin tool friction stir welding(BTFSW)with various traverse speeds were investigated.The sound joint fabricated by the BTFSW was possible under the appropriate welding...ZK60B(Mg-6%Zn-0.6%Zr)alloy joints fabricated by bobbin tool friction stir welding(BTFSW)with various traverse speeds were investigated.The sound joint fabricated by the BTFSW was possible under the appropriate welding parameters.The severe plastic deformation during BTFSW resulted in dispersion and segregation of the Zr-rich particles within the stirred zone(SZ)followed by evolution of a bimodal grain structure with distributed bands of 0.8-1.7μm ultrafine grains and 4.1-7.1μm equiaxed grains.Micro-hardness of SZ is substantially reduced in contrast to that of parent metal(PM)in spite of the finer grain size owing to dissolution of Mg-Zn based precipitates having hardening effects on alpha-Mg matrix.With the decrease in traverse speed,randomization degree of the plasticized metal flow increases,which is evidenced by the randomized arc line pattern at the low traverse speed.Among all defect-free joints,the 200 mm/min joint exhibits the weakest isotropy of texture within SZ and the best tensile properties,which has reduced ultimate tensile strength and yield strength by 5.4% and by 22.2%,respectively,as compared to the PM.The randomized texture hinders the joint fracturing within SZ at low elongation.Therefore,a relatively high elongation of 10.8% was achieved,which corresponded to 72% of the PM value.展开更多
文摘While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.
文摘The Brouwer fixed-point theorem in topology states that for any continuous mapping <em>f</em> on a compact convex set into itself admits a fixed point, <em>i.e.</em>, a point <em>x</em><sub>0</sub> such that<em> f</em>(<em>x</em><sub>0</sub>) = <em>x</em><sub>0</sub>. Under suitable conditions, this fixed point corresponds to the throat of a traversable wormhole, <em>i.e.</em>, <em>b</em>(<em>r</em><sub>0</sub>) = <em>r</em><sub>0</sub> for the shape function <em>b</em> = <em>b</em>(<em>r</em>). The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.
文摘The main goal of this paper is to determine the effect of an extra dimension on a traversable wormhole. Here an earlier study by the author [Phys. Rev. D 98, 064041 (2018)] is extended in several significant ways. To begin with, the extra spatial dimension is assumed to be time dependent, while the redshift and shape functions, as well as the extra dimension, are functions of both r and l, the respective radial and extra coordinates;the last of these is therefore a function of r, l, and t. The main objective is to determine the conditions that allow the throat of the wormhole to be threaded with ordinary matter (by respecting the null energy condition) and that the same conditions lead to a violation of the null energy condition in the fifth dimension, which is therefore responsible for sustaining the wormhole. The dependence of the extra dimension on l and t is subject to additional conditions that are subsequently analyzed in this paper. Finally, the extra dimension may be extremely small or even curled up.
基金Sudan Hansraj is grateful to the National Research Foundation of South Africa for support through Grant 138012the National Research Foundation of South Africa for the award of a postdoctoral fellowship。
文摘Dark energy is typically the principal component needed for the traversability of wormholes(WH),as it provides the negative gravity effect required to keep the throat open.However,can this be achieved without dark energy?It turns out that if we couple the trace of energy-momentum with the standard Einstein-Hilbert Lagrangian and utilize a specific equation of state(EoS),dark energy may be obviated.The Casimir stress energy is known to result in the violation of the null energy condition(NEC)on the energy momentum tensor.This phenomenon makes such an EoS an ideal candidate for generating traversable WH geometries.The laboratory proven phenomenon provides a natural mechanism to sustain an open WH throat without relying on dark energy.Therefore,we generate two classes of WH solutions using this in energy-momentum trace-coupling gravity.For the specific choice of the Casimir EoS relating the energy-momentum tensor components[Kar and Sahdev:Phys.Rev.D 52,2030(1995)]and different choices of redshift functions,we determine the WH geometry completely.The obtained WH solutions violate the NECs,and all qualitative constraints demanded for physically realizable WHs are satisfied.This is demonstrated via graphical plots for a suitably chosen range of coupling parameter values.Furthermore,our study investigates the repulsive effect of gravity,revealing that its presence leads to a negative deflection angle for photons traveling along null geodesics.Notably,we observe a consistent pattern of negative values for the deflection angle across all values of r_(0) in the three scenarios considered,thus indicating the clear manifestation of the repulsive gravity effect.All of this is possible without invoking the existence of dark energy.
文摘In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze- Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2o confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z 〈 0.2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.
文摘To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design.
基金Supported by the National Key Research and Development Program of China(No.2022ZD0119003)and the National Natural Science Founda-tion of China(No.61834005).
文摘The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+4 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)the Talent Recruitment Special Fund of Anhui University of Science and Technology(Grant No.2024yjrc175)the Graduate Innovation Fund Project of Anhui University of Science and Technology(Grant Nos.2024cx2067,2024cx2107,and 2024cx2064)Seed Support Project for Postgraduate Innovation,Entrepreneurship and Practice at Anhui University of Science and Technology(Grant No.2024cxcysj084).
文摘With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and poor encryption efficiency.To enhance performance,this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors.The method begins by using SHA-384 to extract the hash value of the plaintext image,which is then processed to determine the chaotic system’s initial value and block size.The image is padded and divided into blocks for further processing.A novel two-dimensional infinite collapses hyperchaotic map(2DICHM)is employed to generate the intra-block scrambling sequence,while an improved variable Joseph traversal sequence is used for inter-block scrambling.After removing the padding,3D forward and backward shift diffusions,controlled by the 2D-ICHM sequences,are applied to the scrambled image,producing the ciphertext.Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy,anti-noise resilience,correlation coefficient,robustness,and encryption efficiency.
基金DST,New Delhi,India,for its financial support for research facilities under DSTFIST-2019。
文摘This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.
基金the National Natural Science Foundation of China(No.61402051)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM6076)。
文摘This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is used in the scrambling and diffusion stages of the algorithm.Second,in the scrambling process,the image is initially confused by Josephus scrambling,and then the image is further confused by Arnold map.Finally,generated hyperchaos sequence and exclusive OR operation is used for the image to carry on the positive and reverse diffusion to change the pixel value of the image and further hide the effective information of the image.In addition,the information of the plaintext image is used to generate keys used in the algorithm,which increases the ability of resisting plaintext attack.Experimental results and security analysis show that the scheme can effectively hide plaintext image information according to the characteristics of medical images,and is resistant to common types of attacks.In addition,this scheme performs well in the experiments of robustness,which shows that the scheme can solve the problem of image damage in telemedicine.It has a positive significance for the future research.
基金The National Natural Science Foundation of China(No.61070170)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.11KJB520017)Suzhou Application Foundation Research Project(No.SYG201238)
文摘Aiming at the problem that only some types of SPARQL ( simple protocal and resource description framework query language) queries can be answered by using the current resource description framework link traversal based query execution (RDF-LTE) approach, this paper discusses how the execution order of the triple pattern affects the query results and cost based on concrete SPARQL queries, and analyzes two properties of the web of linked data, missing backward links and missing contingency solution. Then three heuristic principles for logic query plan optimization, namely, the filtered basic graph pattern (FBGP) principle, the triple pattern chain principle and the seed URIs principle, are proposed. The three principles contribute to decrease the intermediate solutions and increase the types of queries that can be answered. The effectiveness and feasibility of the proposed approach is evaluated. The experimental results show that more query results can be returned with less cost, thus enabling users to develop the full potential of the web of linked data.
文摘While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect.
基金The National Basic Research Program of China(973Program)(No.2006CB601202)
文摘Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.
文摘To understand the physical meaning of phase time further more, we discuss the reflection phase time of quantum-particles passing though a potential well It is shown that the reflection phase time is equal to the transmission phase time in value and negative under certain conditions for a square potential well by analyzing While quantum-particles passing through the potential well, we think that this course can be described only with the velocity of energy of quantum mechanics whether or not they are reflected or transmitted eventually
基金This work was supported in part by the EPSRC (No.GR/S31402/01).
文摘This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive torque, which in turn can be used for traversability prediction, traction control, and performance optimization of a wheeled vehicle on unknown terrain. The proposed technique is based on the Newton Raphson method. An approximated form of a wheel-soil interaction model based on Composite Simpson's Rule is employed for this purpose. The key soil parameters to be identified are internal friction angle, shear deformation modulus, and lumped pressure-sinkage coefficient. The fourth parameter, cohesion, is not too relevant to vehicle drawbar pull, and is assigned an average value during the identification process. Identified parameters are compared with known values, and shown to be in agreement. The identification method is relatively fast and robust. The identified soil parameters can effectively be used to predict drawbar pull and wheel drive torque with good accuracy. The use of identified soil parameters to design a traversability criterion for wheeled vehicles traversing unknown terrain is presented.
基金sponsored by the National Science and Technology Major Project(No.2017ZX04005001)the Key Research and Development program of Shandong(No.2018GGX103053)。
文摘ZK60B(Mg-6%Zn-0.6%Zr)alloy joints fabricated by bobbin tool friction stir welding(BTFSW)with various traverse speeds were investigated.The sound joint fabricated by the BTFSW was possible under the appropriate welding parameters.The severe plastic deformation during BTFSW resulted in dispersion and segregation of the Zr-rich particles within the stirred zone(SZ)followed by evolution of a bimodal grain structure with distributed bands of 0.8-1.7μm ultrafine grains and 4.1-7.1μm equiaxed grains.Micro-hardness of SZ is substantially reduced in contrast to that of parent metal(PM)in spite of the finer grain size owing to dissolution of Mg-Zn based precipitates having hardening effects on alpha-Mg matrix.With the decrease in traverse speed,randomization degree of the plasticized metal flow increases,which is evidenced by the randomized arc line pattern at the low traverse speed.Among all defect-free joints,the 200 mm/min joint exhibits the weakest isotropy of texture within SZ and the best tensile properties,which has reduced ultimate tensile strength and yield strength by 5.4% and by 22.2%,respectively,as compared to the PM.The randomized texture hinders the joint fracturing within SZ at low elongation.Therefore,a relatively high elongation of 10.8% was achieved,which corresponded to 72% of the PM value.