The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migong...To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.展开更多
With the growing adoption of automated guided vehicles(AGVs)in various industries,the integrated production and transportation scheduling problem(IPTSP)has emerged as a critical research focus.The IPTSP is classified ...With the growing adoption of automated guided vehicles(AGVs)in various industries,the integrated production and transportation scheduling problem(IPTSP)has emerged as a critical research focus.The IPTSP is classified as a strongly NP-hard problem due to the simultaneous scheduling of two resources:machines and transportation equipment.Meta-heuristic algorithms are one of the most popular and effective approaches to solving this problem.However,their effectiveness heavily depends on the choice of solution representation,which influences both the algorithm’s search space and convergence speed.This paper reviews the existing encoding and decoding methods and proposes a novel active decoding approach.Based on different combinations of encoding and decoding methods,six solution representations are identified,among which the newly proposed representation offers a trade-off between the search space and the algorithm’s efficiency.Specifically,four scenarios of IPTSP under different assumptions are first analyzed.Next,the variations in the six solution representations across unused scenarios and different layouts,as well as their respective encoding spaces and qualities,are summarized.Subsequently,the search efficiency of the six solution representations is evaluated using a genetic algorithm to analyze their performance under different scenarios,layouts,time ratios,and number of AGVs.Finally,the advantages,disadvantages and applicable scenes for each solution representation are summarized based on the experimental results and analysis.These findings provide valuable insights for designing more efficient algorithms to address the IPTSP.展开更多
Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long s...Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.展开更多
With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process...With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.展开更多
Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process.Based on prediction of sea level rise over the 21st centu...Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process.Based on prediction of sea level rise over the 21st century,the Zhujiang(Pearl River)Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise.The numerical model results show that the average salt content,saltwater intrusion distance,and stratification will increase as the sea level rises.The changes of these parameters have obvious seasonal variations.The salt content in the Lingdingyang shows more increase in April and October(the transition periods).The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang.The result is just the opposite in Modaomen.The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang.The response results of transport processes to sea level rise demonstrate that:(1)The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing,but the increased stratification would weaken the vertical exchange.The impact of stratification changes overwhelms the impact of tidal changes.It would be more difficult for the surface water to reach the bottom.(2)The lengthways estuarine circulation would be strengthened.Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened.These phenomena are caused by the decrease of water surface slope(WWS)and the change of static pressure with the increase of water depth under sea level rise.展开更多
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ...Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.展开更多
The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons ...The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.展开更多
The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W0...The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W07,W18,and W19,have proven the occurrence of gas hydrate reservoirs in the inter-canyon area between canyons C11 and C12.Whereas,variations of the geomorphology and seismic facies analyzed by high-resolution 3D seismic data indicate that the gas hydrate-bearing sediments may form in different sedimentary processes.In the upper segment,a set of small-scale channels with obvious topographic lows can be identified,revealing fine-grained turbidites supplied from the shelf region during a very short-term sea-level lowstand.In the middle part,gas hydrate units at Site W07 showing mounded or undulation external configuration are interpreted as sliding sedimentary features,and those features caused by gravity destabilization were the main formative mechanism of gas hydrate-bearing sediments that were sourced from the upper segments.In contrast,for the canyon transition zone of lower segments between C11-C12 inter-canyon and C12 intra-canyon areas,where W18 and W19 sites are located,the gas hydratebearing sediments are deposited in the channelized feature in the middle to lower segment and slide erosive surface.Gas hydrate-bearing sediments of the lower segment were migrated through channelized features interconnecting with the middle to lower slope by gravity-driven flows.The majority of deposits tended to be furtherly moved by lateral migration via erosive surface created by sediment failed to intra-canyon area.The conclusion of this study may help better understand the interaction between the formation mechanism of gas hydrate-bearing sediments and the geomorphologic effects of inter-canyon areas.展开更多
Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results sh...Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results show that there exists a sudden temperature drop in the range of 1/4 of width distanced from the edge.When the plate is cooled by 25-56°C,the maximum inhomogeneous temperature distribution under all process conditions will appear in width direction.For the air-cooling transport process,the temperature control model for predicting the average temperature of the Mg plate after a predetermined time period can be established by modifying the Stefan-Boltzmann empirical equation.The model mainly depends on the plate specifications and air-cooling time.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
As an important branch of human geography, transportation geography has experienced three periods of evolution: foundation, systematization, and rapid development of the discipline. It has gradually become a relativel...As an important branch of human geography, transportation geography has experienced three periods of evolution: foundation, systematization, and rapid development of the discipline. It has gradually become a relatively mature discipline. During the period 1930– 1980, the development of transportation geography consisted mainly of the publication of theoretical texts. During 1980–2000, it gradually became a systematic discipline. Since the start of the 21 st century, transportation geography has focused mainly on exploring the impacts of transportation on socio-economic development. Currently, studies on transportation geography have led to significant developments in a number of areas, including transportation theory, facility distribution and planning, transportation flows and network analysis, evaluation of transport modes, transportation planning, and simulation and assessment of urban transportation. Such studies have also enriched human geography research, provided a wider geographical overview and elucidated the development mechanism of transportation, as well as helped to understand the impacts of transport development on socio-economic systems. Some findings obtained by geographers have been widely used in transportation geography and related fields, including the four basic laws of transportation generation, the hub–spoke mode of transport organization, the subordinating and guiding functions of transportation on socio-economic development, regional transport dominance measures, accessibility measures, and spatial organization of port systems.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters...In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide(ITO, 150 nm)/PEDOT:PSS(30 nm)/CBP:4 Cz IPN-x%:4 Cz PN-y%(30 nm)/TPBi(40 nm)/Li F(1 nm)/Al(100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4 Cz IPN:2% 4 Cz PN and 2% 4 Cz IPN:6% 4 Cz PN in emitting material layer(EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML.展开更多
The heavy quarks present in the quark-gluon plasma(QGP)can act as a probe of relativistic heavy ion collisions as they retain the memory of their interaction history.In a previous study,a stochastic Schrödinger e...The heavy quarks present in the quark-gluon plasma(QGP)can act as a probe of relativistic heavy ion collisions as they retain the memory of their interaction history.In a previous study,a stochastic Schrödinger equation(SSE)has been applied to describe the evolution of heavy quarks,where an external field with random phases is used to simulate the thermal medium.In this work,we study the connection between the SSE and the Boltzmann transport equation(BE)approach in the Keldysh Green’s function formalism.By comparing the Green’s function of the heavy quark from the SSE and the Keldysh Green’s functions leading to the Boltzmann equation,we demonstrate that the SSE is consistent with the Boltzmann equation in the weak coupling limit.We subsequently confirm their consistency through numerical calculations.展开更多
According to the second law of thermodynamics,spontaneous chemical processes will ultimately reach the equilibrium state with the lowest energy.However,in biological systems,there are numerous highenergy states far fr...According to the second law of thermodynamics,spontaneous chemical processes will ultimately reach the equilibrium state with the lowest energy.However,in biological systems,there are numerous highenergy states far from equilibrium.One typical example is the transmembrane ion-concentration gradient,which plays crucial roles in maintaining homeostasis,regulating cell volume,and enabling cell signaling.Transmembrane ion-concentration gradient is achieved by an active transport process that requires the input of energy and the action of pump proteins.Replicating this process with synthetic supramolecular systems is particularly challenging,requiring both the input of energy and very specific,spatiotemporal control over ion uptake and release.In nature,pump proteins,such as protein-based ion channels,have evolved highly intricate architectures to perform this function.In contrast,Aprahamian and coworkers recently developed a much simpler smallmolecule system that functions as a molecular ion pump,utilizing light energy to pump chloride ions across a hydrophobic barrier against the concentration gradient[1].展开更多
The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, i...The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.展开更多
A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified ...A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified artificial and natural buffer/detention landscape structures distributing along the ephemeral stream channel in this watershed played an important role of pollutants removal on downstream water quality, especially they have control effect on the diffuse P-pollutants transport process. Surface flow velocity was reduced sharply after passing through these structures. During continuous runoff events, the removal rate of TSS, TP, TDP, DRP by the whole system were 66.7%, 60.7%, 48.4%, and 43.3%, respectively. During discontinuous runoff events, removal rate of pollutants by the whole system was higher due to there was no or little surface water and pollutants exported from the watershed, of which removal rate of pollutants all exceeded 99%. The statistical analysis results of runoff events(n=8) indicated that dry pond was the steadiest structure for controlling diffuse P-pollutants export.展开更多
Plasma spray-physical vapor deposition(PS-PVD)has exhibited the potential ability to prepare columnar structures for advanced thermal barrier coatings(TBCs).The coating structure is nominally affected by operating par...Plasma spray-physical vapor deposition(PS-PVD)has exhibited the potential ability to prepare columnar structures for advanced thermal barrier coatings(TBCs).The coating structure is nominally affected by operating parameters,but it is controlled by the type of deposition unit actually and essentially.In order to realize the columnar structure deposited by gaseous phase units,the transition behavior of gaseous phase units to clusters must be fundamentally understood.This work investigated the transport process of gaseous phase units in the PS-PVD near-substrate boundary layer along with the condensation behavior.The Monte Carlo method was used to examine the transport process and condensation behavior of gaseous phase units under different scale boundary layers.Simulation results show that it is easier to form more numerous larger clusters at the edge of the plasma jet than at the center.Based on the understanding of the changes in deposition unit caused by the condensation of gaseous phase in the near-substrate boundary layer of PS-PVD,an outlook towards TBCs with different structures is presented.And it is in good agreement with the experimental data.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金supported by the National Natural Science Foundation of China(Nos.42007178 and 41907327)the Natural Science Foundation of Hubei(Nos.2020CFB463 and 2019CFB372)+4 种基金China Geological Survey(Nos.DD20160304 and DD20190824)Fundamental Research Funds for the Central Universities(Nos.CUG 190644 and CUGL180817)National Key Research and Development Program(No.2019YFC1805502)Key Laboratory of Karst Dynamics,MNR and GZAR(Institute of Karst Geology,CAGS)Guilin(No.KDL201703)Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification,MNR and IRCK by UNESCO(No.KDL201903)。
文摘To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.
基金Supported by National Key R&D Program of China(Grant No.2022YFB3302700)National Natural Science Foundation of China(Grant No.U21B2029)Fundamental Research Funds for the Central Universities(Grant No.2024BRA004).
文摘With the growing adoption of automated guided vehicles(AGVs)in various industries,the integrated production and transportation scheduling problem(IPTSP)has emerged as a critical research focus.The IPTSP is classified as a strongly NP-hard problem due to the simultaneous scheduling of two resources:machines and transportation equipment.Meta-heuristic algorithms are one of the most popular and effective approaches to solving this problem.However,their effectiveness heavily depends on the choice of solution representation,which influences both the algorithm’s search space and convergence speed.This paper reviews the existing encoding and decoding methods and proposes a novel active decoding approach.Based on different combinations of encoding and decoding methods,six solution representations are identified,among which the newly proposed representation offers a trade-off between the search space and the algorithm’s efficiency.Specifically,four scenarios of IPTSP under different assumptions are first analyzed.Next,the variations in the six solution representations across unused scenarios and different layouts,as well as their respective encoding spaces and qualities,are summarized.Subsequently,the search efficiency of the six solution representations is evaluated using a genetic algorithm to analyze their performance under different scenarios,layouts,time ratios,and number of AGVs.Finally,the advantages,disadvantages and applicable scenes for each solution representation are summarized based on the experimental results and analysis.These findings provide valuable insights for designing more efficient algorithms to address the IPTSP.
基金Supported by National Natural Science Foundation of China(Grant No.51405226).
文摘Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.
文摘With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.
基金The National Natural Science Foundation of China under contract No.51409286the Scientific Research Innovation Project of Jiangsu Province Ordinary University Graduate Student under contract No.CXZZ12_0223the Open Fund Project of Zhujiang River Water Resources Commission of the Zhujiang River Water Conservancy Science Research Institute under contract No.[2013]KJ02
文摘Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process.Based on prediction of sea level rise over the 21st century,the Zhujiang(Pearl River)Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise.The numerical model results show that the average salt content,saltwater intrusion distance,and stratification will increase as the sea level rises.The changes of these parameters have obvious seasonal variations.The salt content in the Lingdingyang shows more increase in April and October(the transition periods).The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang.The result is just the opposite in Modaomen.The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang.The response results of transport processes to sea level rise demonstrate that:(1)The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing,but the increased stratification would weaken the vertical exchange.The impact of stratification changes overwhelms the impact of tidal changes.It would be more difficult for the surface water to reach the bottom.(2)The lengthways estuarine circulation would be strengthened.Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened.These phenomena are caused by the decrease of water surface slope(WWS)and the change of static pressure with the increase of water depth under sea level rise.
基金This work was supported by the National Natural Science Foundation of China(51706070 and U1910215)the Fundamental Research Funds for the Central Universities(2018ZD03,2020MS008 and 2020MS078).
文摘Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.
基金Project supported by the National Instrumentation Program,China(Grant No.2011YQ040082)the National Natural Science Foundation of China(Grant Nos.61274081,51372205,and 51202197)+1 种基金the National 973 Project of China(Grant No.2011CB610400),the China Postdoctoral Science Foundation(Grant No.2014M550509)the 111 Project of China(Grant No.B08040)
文摘The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.
基金Sopported by the Guangdong Province Marine Economic Development(Six Major Marine Industries)Special Fund Project(No.[2021]58)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP307)+2 种基金the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Nos.311020003,31102004)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515012017,2019A1515010786)the“Fourteenth FiveYear Plan”Prospective Basic Major Scientific and Technological Projects of CNPC(No.2021DJ4901)。
文摘The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W07,W18,and W19,have proven the occurrence of gas hydrate reservoirs in the inter-canyon area between canyons C11 and C12.Whereas,variations of the geomorphology and seismic facies analyzed by high-resolution 3D seismic data indicate that the gas hydrate-bearing sediments may form in different sedimentary processes.In the upper segment,a set of small-scale channels with obvious topographic lows can be identified,revealing fine-grained turbidites supplied from the shelf region during a very short-term sea-level lowstand.In the middle part,gas hydrate units at Site W07 showing mounded or undulation external configuration are interpreted as sliding sedimentary features,and those features caused by gravity destabilization were the main formative mechanism of gas hydrate-bearing sediments that were sourced from the upper segments.In contrast,for the canyon transition zone of lower segments between C11-C12 inter-canyon and C12 intra-canyon areas,where W18 and W19 sites are located,the gas hydratebearing sediments are deposited in the channelized feature in the middle to lower segment and slide erosive surface.Gas hydrate-bearing sediments of the lower segment were migrated through channelized features interconnecting with the middle to lower slope by gravity-driven flows.The majority of deposits tended to be furtherly moved by lateral migration via erosive surface created by sediment failed to intra-canyon area.The conclusion of this study may help better understand the interaction between the formation mechanism of gas hydrate-bearing sediments and the geomorphologic effects of inter-canyon areas.
基金This work is financially supported by the National Key Research and Development Program of China(2016YFB0301104)the National Natural Science Foundation of China(51771043).
文摘Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results show that there exists a sudden temperature drop in the range of 1/4 of width distanced from the edge.When the plate is cooled by 25-56°C,the maximum inhomogeneous temperature distribution under all process conditions will appear in width direction.For the air-cooling transport process,the temperature control model for predicting the average temperature of the Mg plate after a predetermined time period can be established by modifying the Stefan-Boltzmann empirical equation.The model mainly depends on the plate specifications and air-cooling time.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金National Natural Science Foundation of China,No.41171107No.41371143
文摘As an important branch of human geography, transportation geography has experienced three periods of evolution: foundation, systematization, and rapid development of the discipline. It has gradually become a relatively mature discipline. During the period 1930– 1980, the development of transportation geography consisted mainly of the publication of theoretical texts. During 1980–2000, it gradually became a systematic discipline. Since the start of the 21 st century, transportation geography has focused mainly on exploring the impacts of transportation on socio-economic development. Currently, studies on transportation geography have led to significant developments in a number of areas, including transportation theory, facility distribution and planning, transportation flows and network analysis, evaluation of transport modes, transportation planning, and simulation and assessment of urban transportation. Such studies have also enriched human geography research, provided a wider geographical overview and elucidated the development mechanism of transportation, as well as helped to understand the impacts of transport development on socio-economic systems. Some findings obtained by geographers have been widely used in transportation geography and related fields, including the four basic laws of transportation generation, the hub–spoke mode of transport organization, the subordinating and guiding functions of transportation on socio-economic development, regional transport dominance measures, accessibility measures, and spatial organization of port systems.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
基金supported by the National High Technology Research and Development Program of China (No.2012AA011901)the National Program on Key Basic Research Project of China (No.2012CB723406)+2 种基金the National Natural Science Foundation of China (No.51573036)the Fundamental Research Funds for the Central Universities of China (No.JD2016JGPY0007)the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China (No.CXY2013HFGD20)。
文摘In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide(ITO, 150 nm)/PEDOT:PSS(30 nm)/CBP:4 Cz IPN-x%:4 Cz PN-y%(30 nm)/TPBi(40 nm)/Li F(1 nm)/Al(100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4 Cz IPN:2% 4 Cz PN and 2% 4 Cz IPN:6% 4 Cz PN in emitting material layer(EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML.
文摘The heavy quarks present in the quark-gluon plasma(QGP)can act as a probe of relativistic heavy ion collisions as they retain the memory of their interaction history.In a previous study,a stochastic Schrödinger equation(SSE)has been applied to describe the evolution of heavy quarks,where an external field with random phases is used to simulate the thermal medium.In this work,we study the connection between the SSE and the Boltzmann transport equation(BE)approach in the Keldysh Green’s function formalism.By comparing the Green’s function of the heavy quark from the SSE and the Keldysh Green’s functions leading to the Boltzmann equation,we demonstrate that the SSE is consistent with the Boltzmann equation in the weak coupling limit.We subsequently confirm their consistency through numerical calculations.
基金financial supports of National Natural Science Foundation of China(22171226)Natural Science Basic Research Program of Shaanxi(2022JC-06).
文摘According to the second law of thermodynamics,spontaneous chemical processes will ultimately reach the equilibrium state with the lowest energy.However,in biological systems,there are numerous highenergy states far from equilibrium.One typical example is the transmembrane ion-concentration gradient,which plays crucial roles in maintaining homeostasis,regulating cell volume,and enabling cell signaling.Transmembrane ion-concentration gradient is achieved by an active transport process that requires the input of energy and the action of pump proteins.Replicating this process with synthetic supramolecular systems is particularly challenging,requiring both the input of energy and very specific,spatiotemporal control over ion uptake and release.In nature,pump proteins,such as protein-based ion channels,have evolved highly intricate architectures to perform this function.In contrast,Aprahamian and coworkers recently developed a much simpler smallmolecule system that functions as a molecular ion pump,utilizing light energy to pump chloride ions across a hydrophobic barrier against the concentration gradient[1].
文摘The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.
文摘A case study on the transport process of agricultural diffuse P-pollutants was conducted in an experimental watershed locating in the north bank of Yuqiao Reservoir during 2001 and 2002. It was found that diversified artificial and natural buffer/detention landscape structures distributing along the ephemeral stream channel in this watershed played an important role of pollutants removal on downstream water quality, especially they have control effect on the diffuse P-pollutants transport process. Surface flow velocity was reduced sharply after passing through these structures. During continuous runoff events, the removal rate of TSS, TP, TDP, DRP by the whole system were 66.7%, 60.7%, 48.4%, and 43.3%, respectively. During discontinuous runoff events, removal rate of pollutants by the whole system was higher due to there was no or little surface water and pollutants exported from the watershed, of which removal rate of pollutants all exceeded 99%. The statistical analysis results of runoff events(n=8) indicated that dry pond was the steadiest structure for controlling diffuse P-pollutants export.
基金supported by the National Key Research and Development Program of China(No.2017YFB0306103)R&D Program in Key Fields of Guangdong Province(No.2019B010936001)+2 种基金the National Natural Science Foundation of China(Grant No.51901175)the China Postdoctoral Science Foundation funded project(No.2019M653602)the National Program for Support of Top-notch Young Professionals。
文摘Plasma spray-physical vapor deposition(PS-PVD)has exhibited the potential ability to prepare columnar structures for advanced thermal barrier coatings(TBCs).The coating structure is nominally affected by operating parameters,but it is controlled by the type of deposition unit actually and essentially.In order to realize the columnar structure deposited by gaseous phase units,the transition behavior of gaseous phase units to clusters must be fundamentally understood.This work investigated the transport process of gaseous phase units in the PS-PVD near-substrate boundary layer along with the condensation behavior.The Monte Carlo method was used to examine the transport process and condensation behavior of gaseous phase units under different scale boundary layers.Simulation results show that it is easier to form more numerous larger clusters at the edge of the plasma jet than at the center.Based on the understanding of the changes in deposition unit caused by the condensation of gaseous phase in the near-substrate boundary layer of PS-PVD,an outlook towards TBCs with different structures is presented.And it is in good agreement with the experimental data.