For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and s...Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.展开更多
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct...In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.展开更多
In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics ...In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.展开更多
Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for tran...Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for transportation problem which reduces cost of transportation more than any transportation method such as LCM, northwest, Vogel’s approximation and so on. This method has been illustrated by taking an example;afterwards, it compares basic initial feasible solution with other methods IBF and optimal dictate solutions such as MODI and Steppingstone method.展开更多
It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at...It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at least quadratically faster than the classical ones.展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in com...Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.展开更多
Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate i...Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate is proved for S-matrix. The so-called finite step convergence for coincident components is discussed for nondegenerate discreted problems.展开更多
Genetic algorithms (GAs) employ the evolutionary process of Darwin’s nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to sol...Genetic algorithms (GAs) employ the evolutionary process of Darwin’s nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to solve a classical transportation problem, namely the Hitchcock’s Transportation Problem (HTP), and the GA is improved to search for all optimal solutions and identify them automatically. The algorithm is coded with C++ and validated by numerical examples. The computational results show that the algorithm is efficient for solving the Hitchcock’s transportation problem.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
Finding an initial basic feasible solution is the prime requirement to obtain an optimal solution for the transportation problems. In this article, a new approach is proposed to find an initial basic feasible solution...Finding an initial basic feasible solution is the prime requirement to obtain an optimal solution for the transportation problems. In this article, a new approach is proposed to find an initial basic feasible solution for the transportation problems. The method is also illustrated with numerical examples.展开更多
The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all ...The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.展开更多
Petrol is a kind of strategic natural resources. Provide legitimate transportation plans for the petrol secondary distribution are the key links to guarantee the petrol provision. If the total supply is insufficient, ...Petrol is a kind of strategic natural resources. Provide legitimate transportation plans for the petrol secondary distribution are the key links to guarantee the petrol provision. If the total supply is insufficient, some petrol stations can’t avoid shortage because their demands could not be met. So the shortage cost will appear. This paper studies the problem of how to arrange the transportation plan in order to minimize the total cost when the total volume of supply is insufficient. Given the storage volume, the sales rate and the unit shortage cost of every petrol station, considering the full loading constraints of the compartment vehicle, a mixed integer programming model for minimizing the total cost of petrol secondary distribution is established. A Lingo program is compiled for solving the model. Finally, simulation on an example has been done and a reasonable transportation plan is obtained. The model and algorithm in this paper can provide a theoretical basis for dispatching department to make transportation plan.展开更多
In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to dif...In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.展开更多
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.
基金supported by the National Natural Science Foundation of China(Nos.12475174 and 12175101)Yue Lu Shan Center Industrial Innovation(No.2024YCII0108)。
文摘In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.
文摘In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.
文摘Minimizing transportation time and getting optimal solutions are always considered as important factors while solving transportation problem. This paper shows a new approach for finding initial basic solution for transportation problem which reduces cost of transportation more than any transportation method such as LCM, northwest, Vogel’s approximation and so on. This method has been illustrated by taking an example;afterwards, it compares basic initial feasible solution with other methods IBF and optimal dictate solutions such as MODI and Steppingstone method.
文摘It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at least quadratically faster than the classical ones.
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
基金This work was funded by the Deanship of Scientific Research at King Saud University through research Group Number RG-1436-040.
文摘Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.
文摘Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate is proved for S-matrix. The so-called finite step convergence for coincident components is discussed for nondegenerate discreted problems.
文摘Genetic algorithms (GAs) employ the evolutionary process of Darwin’s nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to solve a classical transportation problem, namely the Hitchcock’s Transportation Problem (HTP), and the GA is improved to search for all optimal solutions and identify them automatically. The algorithm is coded with C++ and validated by numerical examples. The computational results show that the algorithm is efficient for solving the Hitchcock’s transportation problem.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
文摘Finding an initial basic feasible solution is the prime requirement to obtain an optimal solution for the transportation problems. In this article, a new approach is proposed to find an initial basic feasible solution for the transportation problems. The method is also illustrated with numerical examples.
文摘The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.
文摘Petrol is a kind of strategic natural resources. Provide legitimate transportation plans for the petrol secondary distribution are the key links to guarantee the petrol provision. If the total supply is insufficient, some petrol stations can’t avoid shortage because their demands could not be met. So the shortage cost will appear. This paper studies the problem of how to arrange the transportation plan in order to minimize the total cost when the total volume of supply is insufficient. Given the storage volume, the sales rate and the unit shortage cost of every petrol station, considering the full loading constraints of the compartment vehicle, a mixed integer programming model for minimizing the total cost of petrol secondary distribution is established. A Lingo program is compiled for solving the model. Finally, simulation on an example has been done and a reasonable transportation plan is obtained. The model and algorithm in this paper can provide a theoretical basis for dispatching department to make transportation plan.
文摘In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.