Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme cond...Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme conditions, it will even fail to work. In this paper, we propose a novel roll compensation(RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing the influence of roll axis on the system performance, details of the compensation method are derived. Simulation and measurement results indicate that the proposed RC method can effectively reduce the initial searching time for satellite communication. In addition, tracking along with the ellipse path with the RC method provides the highest tracking efficiency.展开更多
We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ...We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.展开更多
We report an experimental demonstration of geopotential difference measurement using a pair of transportable ^(40)Ca^(+) optical clocks(TOC-729-1 and TOC-729-3)in the laboratory,each of them has an uncertainty of 1.3&...We report an experimental demonstration of geopotential difference measurement using a pair of transportable ^(40)Ca^(+) optical clocks(TOC-729-1 and TOC-729-3)in the laboratory,each of them has an uncertainty of 1.3×10^(−17) and an instability of 4.8×10^(−15)/√τ.Referenced to a stationary clock of TOC-729-1,the geopotential difference measurements are realized by moving TOC-729-3 to three different locations and the relevant altitude differences are measured with uncertainties at the level of 20 cm.After correcting the systematic shifts(including gravitational red shift),the two-clock frequency difference is measured to be–0.7(2.2)×10^(−17),considering both the statistic(1.0×10^(−17))and the systematic(1.9×10^(−17))uncertainties.The frequency difference between these two clocks is within their respective uncertainties,verifying the reliability of transportable ^(40)Ca^(+) optical clocks at the low level of 10^(−17).展开更多
This paper studies single-parent family conversation mainly,the researcher takes 10 hours of recordings in a single-parent family in Shenzhen as data to study conversational identity construction.
This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle...This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.展开更多
To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbo...To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbonization temperature was up to 200℃.The optimal laboratory process of infected pine wood charcoal(IPWC)was carbonization temperature of 500℃,heating rate of 3℃min^(−1)and holding time of 0 min.Based on the optimal laboratory process,the transportable carbonization equipment produced IPWC with a fixed carbon content of 79.82%,and ash content of 1.14%and a moisture content of 7.83%,which meets the requirements of EN 1860-2:2005(E)standard.The economic efficiency of incineration(T1 mode),crushing(T2 mode),and transportable carbonization(T3 mode)was evaluated.For each ton of IPW treatment,the profit generated was−75.48 USD in T1 mode,26.28 USD in T2 mode,and 51.91 USD in T3 mode.T3 mode had the highest economic efficiency.These findings will be helpful to provide guidance for the control of PWD and value-added utilization of IPW.展开更多
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
The kidneys play a critical role in maintaining glucose homeostasis.Under normal renal tubular function,most of the glucose filtered from the glomeruli is re-absorbed in the proximal tubules,leaving only trace amounts...The kidneys play a critical role in maintaining glucose homeostasis.Under normal renal tubular function,most of the glucose filtered from the glomeruli is re-absorbed in the proximal tubules,leaving only trace amounts in the urine.Glycosuria can occur as a symptom of generalized proximal tubular dysfunction or when the reabsorption threshold is exceeded or the glucose threshold is reduced,as seen in familial renal glycosuria(FRG).FRG is characterized by persistent glycosuria despite normal blood glucose levels and tubular function and is primarily associated with mutations in the sodium/glucose cotransporter 5A2 gene,which encodes the sodium-glucose cotransporter(SGLT)2.Inhibiting SGLTs has been proposed as a novel treatment strategy for diabetes,and since FRG is often considered an asymptomatic and benign condition,it has inspired preclinical and clinical studies using SGLT2 inhibitors in type 2 diabetes.However,patients with FRG may exhibit clinical features such as lower body weight or height,altered systemic blood pressure,diaper dermatitis,amino-aciduria,decreased serum uric acid levels,and hypercalciuria.Further research is needed to fully understand the pathophysiology,molecular genetics,and clinical manifestations of renal glucosuria.展开更多
A high-performance transportable fountain clockis attractive for use in laboratories with high-precisiontime-frequency measurement requirements. This Letterreports the improvement of the stability of atransportable ru...A high-performance transportable fountain clockis attractive for use in laboratories with high-precisiontime-frequency measurement requirements. This Letterreports the improvement of the stability of atransportable rubidium-87 fountain clock because of anoptimization of temperature characteristics. This clockintegrates its physical packaging, optical benches,microwave frequency synthesizers, and electronic controlsonto an easily movable wheeled plate. Two optical bencheswith a high-vibration resistance are realized in thiswork. No additional adjustment is required after movingthem several times. The Allan deviation of the fountainclock frequency was measured by comparing it with that ofthe hydrogen maser. The fountain clock got a short-termstability of 2.3×10^-13 at 1 s and long-term stabilityon the order of 10-16 at 100,000 s.展开更多
Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen so...Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.展开更多
The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely...The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely simultaneously released and eventually into the ocean with surface runoff.Therefore,their mutual influence and shared destiny in marine environment cannot be ignored.This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions.Results showed that NPs remained dispersed in brine,while nZnO formed homoaggregates.In seawater of 35 practical salinity units(PSU),nZnO formed heteroaggregates with NPs,inhibiting NPs mobility and decreasing the recovered mass percentage(Meff)from 24.52%to 12.65%.In 3.5 PSU brackish water,nZnO did not significantly aggregate with NPs,and thus barely affected their mobility.However,NPs greatly enhanced nZnO transport with Meff increasing from 14.20%to 25.08%,attributed to the carrier effect of higher mobility NPs.Cotransport from brackishwater to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU,below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport.This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.展开更多
The efficiency of perovskite solar cells(PSCs)has progressed rapidly,exceeding 26%for single-junction devices and surpassing 34%in perovskite-silicon tandem configurations,establishing PSCs as a promising alternative ...The efficiency of perovskite solar cells(PSCs)has progressed rapidly,exceeding 26%for single-junction devices and surpassing 34%in perovskite-silicon tandem configurations,establishing PSCs as a promising alternative to traditional photovoltaic technologies.However,their commercialization is constrained by significant stability challenges in outdoor environments.This review critically examines key cell-level issues affecting the long-term performance and reliability of PSCs,focusing on instabilities arising from the intrinsic phases of the perovskite absorber and external stress factors.Mitigation strategies to enhance stability are discussed,alongside recent advancements in charge transport layers,electrodes,and interfaces aimed at reducing environmental degradation and improving energy level alignment for efficient charge extraction.The importance of accelerated aging tests and the establishment of standardized protocols is underscored for accurately predicting device lifetimes and identifying failure mechanisms,thereby ensuring stability under real-world conditions.Furthermore,a comprehensive techno-economic analysis evaluates how advancements in materials and strategic innovations influence efficiency,durability,and cost,which are critical for the commercial adoption of PSCs.This review delineates the essential steps required to transition PSC technology from laboratory-scale research to widespread commercialization within the global photovoltaic industry.展开更多
Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and...Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and source contributions to historical EOPEs is still lacking.In this paper,the K-means clustering method is applied to identify six dominant SWPs during the warm season in the Yangtze River Delta(YRD)region from 2016 to 2022.It provides an integrated analysis of the meteorological factors affecting ozone pollution in Hefei under different SWPs.Using the WRF-FLEXPART model,the transport pathways(TPPs)and geographical sources of the near-surface air masses in Hefei during EOPEs are investigated.The results reveal that Hefei experienced the highest ozone concentration(134.77±42.82μg/m^(3)),exceedance frequency(46 days(23.23%)),and proportion of EOPEs(21 instances,47.7%)under the control of peripheral subsidence of typhoon(Type 5).Regional southeast winds correlated with the ozone pollution in Hefei.During EOPEs,a high boundary layer height,solar radiation,and temperature;lowhumidity and cloud cover;and pronounced subsidence airflow occurred over Hefei and the broader YRD region.The East-South(E_S)patterns exhibited the highest frequency(28 instances,65.11%).Regarding the TPPs and geographical sources of the near-surface air masses during historical EOPEs.The YRD was the main source for land-originating air masses under E_S patterns(50.28%),with Hefei,southern Anhui,southern Jiangsu,and northern Zhejiang being key contributors.These findings can help improve ozone pollution early warning and control mechanisms at urban and regional scales.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f...Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.展开更多
Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potenti...Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.展开更多
The content of soluble sugars is a vital parameter that indicates the quality of fleshy fruits such as apple(Malus domestica Borkh.).Studying the patterns of accumulation of soluble sugars and regulatory mechanisms as...The content of soluble sugars is a vital parameter that indicates the quality of fleshy fruits such as apple(Malus domestica Borkh.).Studying the patterns of accumulation of soluble sugars and regulatory mechanisms associated with fruit development is crucial for breeding improved fruit varieties.Here,we report that MdCIbHLH1,a low temperature-induced b HLH transcription factor,inhibits the accumulation of soluble sugars by regulating sugar-metabolizing enzyme activities,photosynthetic performance,and the expression of sugar-related genes in developing apple fruits.MdCIbHLH1 inhibits MdFBP and MdPEPCK expression,thus blocking the conversion of acids to sugars in apple fruits.We also discovered that MdCIbHLH1 decreases the photosynthetic rate and carbohydrate accumulation in apple leaves.Our results suggest that soluble sugar accumulation in apple fruits is influenced by multiple factors,including metabolic status,photosynthesis,and carbohydrate allocation.MdCIbHLH1 is critically involved in controlling the accumulation of soluble sugars by coordinating carbohydrate synthesis and allocation,thus influencing sugar transport and its metabolism during the development of apple fruits.展开更多
基金jointly sponsored by scientific research foundation NUPTSF(Grant No.NY-214144 and Grant No.NY-215073)NSFC(Grant No.61701260)
文摘Two-axis transportable satellite antennas(TATSAs) have been widely adopted owing to its simple structure and low cost. However, by searching in a wide range, it will take a very long searching time. Under extreme conditions, it will even fail to work. In this paper, we propose a novel roll compensation(RC) method for the low-cost TATSAs to achieve faster tracking even if when the antenna has no azimuth sensor. By analyzing the influence of roll axis on the system performance, details of the compensation method are derived. Simulation and measurement results indicate that the proposed RC method can effectively reduce the initial searching time for satellite communication. In addition, tracking along with the ellipse path with the RC method provides the highest tracking efficiency.
基金Supported by the National Natural Science Foundation of China under Grant No 91536217the West Light Foundation of the Chinese Academy of Sciences under Grant No 2013ZD02the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2015334
文摘We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.
基金Project supported by the Basic Frontier Science Research Program of Chinese Academy of Sciences (Grant No.ZDBS-LY-DQC028)the National Key Research and Development Program of China (Grant No.2017YFA0304404)the National Natural Science Foundation of China (Grant No.11674357)。
文摘We report an experimental demonstration of geopotential difference measurement using a pair of transportable ^(40)Ca^(+) optical clocks(TOC-729-1 and TOC-729-3)in the laboratory,each of them has an uncertainty of 1.3×10^(−17) and an instability of 4.8×10^(−15)/√τ.Referenced to a stationary clock of TOC-729-1,the geopotential difference measurements are realized by moving TOC-729-3 to three different locations and the relevant altitude differences are measured with uncertainties at the level of 20 cm.After correcting the systematic shifts(including gravitational red shift),the two-clock frequency difference is measured to be–0.7(2.2)×10^(−17),considering both the statistic(1.0×10^(−17))and the systematic(1.9×10^(−17))uncertainties.The frequency difference between these two clocks is within their respective uncertainties,verifying the reliability of transportable ^(40)Ca^(+) optical clocks at the low level of 10^(−17).
文摘This paper studies single-parent family conversation mainly,the researcher takes 10 hours of recordings in a single-parent family in Shenzhen as data to study conversational identity construction.
基金supported by National Natural Science Foundation of China(No.72171026).
文摘This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.
基金supported by the"National Natural Science Foundation of China"(Grant numbers 31971742)"Basic Scientific Research Funds of International Centre"(1632023003).
文摘To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbonization temperature was up to 200℃.The optimal laboratory process of infected pine wood charcoal(IPWC)was carbonization temperature of 500℃,heating rate of 3℃min^(−1)and holding time of 0 min.Based on the optimal laboratory process,the transportable carbonization equipment produced IPWC with a fixed carbon content of 79.82%,and ash content of 1.14%and a moisture content of 7.83%,which meets the requirements of EN 1860-2:2005(E)standard.The economic efficiency of incineration(T1 mode),crushing(T2 mode),and transportable carbonization(T3 mode)was evaluated.For each ton of IPW treatment,the profit generated was−75.48 USD in T1 mode,26.28 USD in T2 mode,and 51.91 USD in T3 mode.T3 mode had the highest economic efficiency.These findings will be helpful to provide guidance for the control of PWD and value-added utilization of IPW.
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
文摘The kidneys play a critical role in maintaining glucose homeostasis.Under normal renal tubular function,most of the glucose filtered from the glomeruli is re-absorbed in the proximal tubules,leaving only trace amounts in the urine.Glycosuria can occur as a symptom of generalized proximal tubular dysfunction or when the reabsorption threshold is exceeded or the glucose threshold is reduced,as seen in familial renal glycosuria(FRG).FRG is characterized by persistent glycosuria despite normal blood glucose levels and tubular function and is primarily associated with mutations in the sodium/glucose cotransporter 5A2 gene,which encodes the sodium-glucose cotransporter(SGLT)2.Inhibiting SGLTs has been proposed as a novel treatment strategy for diabetes,and since FRG is often considered an asymptomatic and benign condition,it has inspired preclinical and clinical studies using SGLT2 inhibitors in type 2 diabetes.However,patients with FRG may exhibit clinical features such as lower body weight or height,altered systemic blood pressure,diaper dermatitis,amino-aciduria,decreased serum uric acid levels,and hypercalciuria.Further research is needed to fully understand the pathophysiology,molecular genetics,and clinical manifestations of renal glucosuria.
基金supported by the Ministry of Science and Technology of China(No.2013YQ09094304)the National Natural Science Foundation of China(No.11034008)
文摘A high-performance transportable fountain clockis attractive for use in laboratories with high-precisiontime-frequency measurement requirements. This Letterreports the improvement of the stability of atransportable rubidium-87 fountain clock because of anoptimization of temperature characteristics. This clockintegrates its physical packaging, optical benches,microwave frequency synthesizers, and electronic controlsonto an easily movable wheeled plate. Two optical bencheswith a high-vibration resistance are realized in thiswork. No additional adjustment is required after movingthem several times. The Allan deviation of the fountainclock frequency was measured by comparing it with that ofthe hydrogen maser. The fountain clock got a short-termstability of 2.3×10^-13 at 1 s and long-term stabilityon the order of 10-16 at 100,000 s.
基金supported by National Key Research and Development Program of China(Grant No.2021YFE0115200)the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(Grant No.U22A20356).
文摘Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.
基金supported by the National Natural Science Foundation of China (No.22176148)the Shanghai Rising-Star Program (No.23QB1406400)+1 种基金the Fundamental Research Funds for the Central Universities of Tongji University (No.2023-3-ZD-02)supported by the program INTPART (Plastic Pollution,No.275172)funded by the Research Council of Norway.
文摘The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely simultaneously released and eventually into the ocean with surface runoff.Therefore,their mutual influence and shared destiny in marine environment cannot be ignored.This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions.Results showed that NPs remained dispersed in brine,while nZnO formed homoaggregates.In seawater of 35 practical salinity units(PSU),nZnO formed heteroaggregates with NPs,inhibiting NPs mobility and decreasing the recovered mass percentage(Meff)from 24.52%to 12.65%.In 3.5 PSU brackish water,nZnO did not significantly aggregate with NPs,and thus barely affected their mobility.However,NPs greatly enhanced nZnO transport with Meff increasing from 14.20%to 25.08%,attributed to the carrier effect of higher mobility NPs.Cotransport from brackishwater to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU,below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport.This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
基金supported by a National Research Foundation of Korea(NRF)grant(No.2016R1A3B 1908249),funded by the Korean government.
文摘The efficiency of perovskite solar cells(PSCs)has progressed rapidly,exceeding 26%for single-junction devices and surpassing 34%in perovskite-silicon tandem configurations,establishing PSCs as a promising alternative to traditional photovoltaic technologies.However,their commercialization is constrained by significant stability challenges in outdoor environments.This review critically examines key cell-level issues affecting the long-term performance and reliability of PSCs,focusing on instabilities arising from the intrinsic phases of the perovskite absorber and external stress factors.Mitigation strategies to enhance stability are discussed,alongside recent advancements in charge transport layers,electrodes,and interfaces aimed at reducing environmental degradation and improving energy level alignment for efficient charge extraction.The importance of accelerated aging tests and the establishment of standardized protocols is underscored for accurately predicting device lifetimes and identifying failure mechanisms,thereby ensuring stability under real-world conditions.Furthermore,a comprehensive techno-economic analysis evaluates how advancements in materials and strategic innovations influence efficiency,durability,and cost,which are critical for the commercial adoption of PSCs.This review delineates the essential steps required to transition PSC technology from laboratory-scale research to widespread commercialization within the global photovoltaic industry.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,and 41975037)the National Key Research and Development Programof China(No.2022YFC3700303).
文摘Extreme ozone pollution events(EOPEs)are associated with synoptic weather patterns(SWPs)and pose severe health and ecological risks.However,a systematic investigation of themeteorological causes,transport pathways,and source contributions to historical EOPEs is still lacking.In this paper,the K-means clustering method is applied to identify six dominant SWPs during the warm season in the Yangtze River Delta(YRD)region from 2016 to 2022.It provides an integrated analysis of the meteorological factors affecting ozone pollution in Hefei under different SWPs.Using the WRF-FLEXPART model,the transport pathways(TPPs)and geographical sources of the near-surface air masses in Hefei during EOPEs are investigated.The results reveal that Hefei experienced the highest ozone concentration(134.77±42.82μg/m^(3)),exceedance frequency(46 days(23.23%)),and proportion of EOPEs(21 instances,47.7%)under the control of peripheral subsidence of typhoon(Type 5).Regional southeast winds correlated with the ozone pollution in Hefei.During EOPEs,a high boundary layer height,solar radiation,and temperature;lowhumidity and cloud cover;and pronounced subsidence airflow occurred over Hefei and the broader YRD region.The East-South(E_S)patterns exhibited the highest frequency(28 instances,65.11%).Regarding the TPPs and geographical sources of the near-surface air masses during historical EOPEs.The YRD was the main source for land-originating air masses under E_S patterns(50.28%),with Hefei,southern Anhui,southern Jiangsu,and northern Zhejiang being key contributors.These findings can help improve ozone pollution early warning and control mechanisms at urban and regional scales.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by the Open Fund of State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE201806)the National Natural Science Foundation of China (Grant No.42177155).
文摘Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(No.22020102004)+1 种基金the Tianjin Municipal Science and Technology Bureau(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities by the Ministry of Education of China(No.T2017002).
文摘Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32122080,31972375)Shandong Province(Grant No.ZR2020YQ25)。
文摘The content of soluble sugars is a vital parameter that indicates the quality of fleshy fruits such as apple(Malus domestica Borkh.).Studying the patterns of accumulation of soluble sugars and regulatory mechanisms associated with fruit development is crucial for breeding improved fruit varieties.Here,we report that MdCIbHLH1,a low temperature-induced b HLH transcription factor,inhibits the accumulation of soluble sugars by regulating sugar-metabolizing enzyme activities,photosynthetic performance,and the expression of sugar-related genes in developing apple fruits.MdCIbHLH1 inhibits MdFBP and MdPEPCK expression,thus blocking the conversion of acids to sugars in apple fruits.We also discovered that MdCIbHLH1 decreases the photosynthetic rate and carbohydrate accumulation in apple leaves.Our results suggest that soluble sugar accumulation in apple fruits is influenced by multiple factors,including metabolic status,photosynthesis,and carbohydrate allocation.MdCIbHLH1 is critically involved in controlling the accumulation of soluble sugars by coordinating carbohydrate synthesis and allocation,thus influencing sugar transport and its metabolism during the development of apple fruits.