By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling(SOC)and a specific controlled parameter,we demonstrate an exactly solvable two-level model with a complete set ...By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling(SOC)and a specific controlled parameter,we demonstrate an exactly solvable two-level model with a complete set of spin-motion entangled Schrödinger kitten(or cat)states.In the undriven case,application of a modulation resonance results in the exact stationary states.We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging positions of the probability-density wavepackets to create transitions between the different degenerate ground states.The expected energy consisting of quantum and continuous parts is derived,and the energy deviations caused by the exchange operations are much less than the quantum gap.The results could be directly extended to a weakly coupled single-particle chain for transparently encoding spin-orbit qubits via the robust spin-motion entangled degenerate ground states.展开更多
Transparent visualization is used in many fields because it can visualize not only the frontal object but also other important objects behind it.Although in many situations,it would be very important for the 3D struct...Transparent visualization is used in many fields because it can visualize not only the frontal object but also other important objects behind it.Although in many situations,it would be very important for the 3D structures of the visualized transparent images to be perceived as they are simulated,little is known quantitatively as to how such transparent 3D structures are perceived.To address this question,in the present study,we conducted a psychophysical experiment in which the observers reported the perceived depth magnitude of a transparent object in medical images,presented with a multiview 3D display.For the visualization,we employed a stochastic point-based rendering(SPBR)method,which was developed recently as a technique for efficient transparentrendering.Perceived depth of the transparent object was smaller than the simulated depth.We found,however,that such depth underestimation can be alleviated to some extent by(1)applying luminance gradient inherent in the SPBR method,(2)employing high opacities,and(3)introducing binocular disparity and motion parallax produced by a multi-view 3D display.展开更多
黄籽油菜因菜油的外观、品质好等优势深受消费者欢迎,但后代性状分离不稳定,严重影响其大面积应用。为解析黄籽油菜性状分离不稳定的内在原因,探寻黄籽油菜中黄色籽粒和黑色籽粒之间内在生理机制存在的差异,以甘蓝型黄籽油菜(CK)为材料...黄籽油菜因菜油的外观、品质好等优势深受消费者欢迎,但后代性状分离不稳定,严重影响其大面积应用。为解析黄籽油菜性状分离不稳定的内在原因,探寻黄籽油菜中黄色籽粒和黑色籽粒之间内在生理机制存在的差异,以甘蓝型黄籽油菜(CK)为材料,对其分离后代中的黄色(Y)、黑色(B)籽粒植株的农艺性状、生理生化指标、种皮颜色相关基因等之间的表达差异开展了研究。结果表明:分离后代中,Y的根茎粗和株高均优于CK和B,B的株高分别与CK、Y呈显著差异,B的根茎粗与Y呈显著差异。Y的病害指数为1.97,CK和B的病害指数分别为2.55,3.33,表明Y在抗病性方面优于CK和B。在9—10叶期Y叶片中的丙二醛(MDA)含量最低,花期Y和CK花中的过氧化物酶(POD)活性持续上升,表明黄籽油菜抗逆能力较强。7—8叶期和9—10叶期B和Y中TT18、TT8基因的表达量均高于CK,终花期B和Y中TT18基因的表达量显著低于CK。授粉后28 d Y种子中MYB47基因的表达量最高,分别为CK的5.56倍和B的5.79倍。TT8基因在授粉后21 d的Y中表达量最高,分别为CK和B的3.30,2.29倍。黄籽油菜在含油量、抗逆等方面均有明显优势,因而大力发展黄籽油菜可为提高菜油供应量,解决我国食用油安全提供新思路。展开更多
The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection propert...The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.展开更多
Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shif...Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out.展开更多
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a...Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
This article explores the ethical considerations surrounding the reporting of offlabel and experimental treatments in medical case reports,with a focus on fields such as oncology,psychiatry,and pediatrics.It emphasize...This article explores the ethical considerations surrounding the reporting of offlabel and experimental treatments in medical case reports,with a focus on fields such as oncology,psychiatry,and pediatrics.It emphasizes the balance between innovation and evidence-based medicine,highlighting the critical role of case reports in disseminating clinical experiences and advancing medical knowledge.The discussion delves into the ethical framework guiding case reporting,including principles of patient autonomy,informed consent,non-maleficence,beneficence,justice,and transparency.Challenges such as negative outcome reporting,commercial interests,and the balance between innovation and caution are examined.Recommendations for ethical vigilance,the development of comprehensive guidelines,and the role of regulatory bodies are proposed to ensure patient safety and uphold scientific integrity.The article concludes by underscoring the importance of a collaborative effort among clinicians,researchers,ethicists,and regulatory bodies to foster the responsible advancement of medical science while adhering to the highest ethical standards.展开更多
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni...This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.展开更多
Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties ...Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties of typical transparent single crystals under shock or ramp compression,which helps in the selection of appropriate optical windows for high-pressure experiments.The second involves the exploration of novel optical windows,particularly transparent polycrystalline ceramics,which not only match the shock impedance of the samples,but also preserve transparency under dynamic compression.In this study,we first integrate existing research on the evolution of optical properties in transparent single crystals and polycrystalline ceramics subjected to shock or ramp loading,proposing a mechanism that links mesoscopic damage to macroscopic optical transparency.Subsequently,through a systematic integration of experiments and computational analyses on polycrystalline transparent ceramics,we demonstrate that shock transparency can be enhanced by optimizing grain size and that shock impedance can be designed via compositional tuning.Notably,our results reveal that nano-grained MgAl_(2)O_(4) ceramics exhibit outstanding optical transparency under high shock pressures,highlighting a promising strategy for designing optical windows that retain transparency under extreme dynamic loading conditions.展开更多
Measuring the impact of AI systems The recent 2025 AI Index Report from Stanford University revealed that skepticism about the ethical conduct of AI companies is growing,and trust in fairness is shrinking.There is als...Measuring the impact of AI systems The recent 2025 AI Index Report from Stanford University revealed that skepticism about the ethical conduct of AI companies is growing,and trust in fairness is shrinking.There is also less confidence that personal data will be protected and fewer people believe AI systems are unbiased and free of discrimination.Trust and transparency are essential for AI to deliver on its promises in a safe and responsible way.Governments are stepping up with new AI-related regulations,and international standards such as ISO/IEC 42001 have been developed to support them,but a lot more needs to be done to reduce potential risks and address societal concerns.展开更多
Blockchain Technology(BT)has emerged as a transformative solution for improving the efficacy,security,and transparency of supply chain intelligence.Traditional Supply Chain Management(SCM)systems frequently have probl...Blockchain Technology(BT)has emerged as a transformative solution for improving the efficacy,security,and transparency of supply chain intelligence.Traditional Supply Chain Management(SCM)systems frequently have problems such as data silos,a lack of visibility in real time,fraudulent activities,and inefficiencies in tracking and traceability.Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues;it facilitates trust,security,and the sharing of data in real-time among all parties involved.Through an examination of critical technologies,methodology,and applications,this paper delves deeply into computer modeling based-blockchain framework within supply chain intelligence.The effect of BT on SCM is evaluated by reviewing current research and practical applications in the field.As part of the process,we delved through the research on blockchain-based supply chain models,smart contracts,Decentralized Applications(DApps),and how they connect to other cutting-edge innovations like Artificial Intelligence(AI)and the Internet of Things(IoT).To quantify blockchain’s performance,the study introduces analytical models for efficiency improvement,security enhancement,and scalability,enabling computational assessment and simulation of supply chain scenarios.These models provide a structured approach to predicting system performance under varying parameters.According to the results,BT increases efficiency by automating transactions using smart contracts,increases security by using cryptographic techniques,and improves transparency in the supply chain by providing immutable records.Regulatory concerns,challenges with interoperability,and scalability all work against broad adoption.To fully automate and intelligently integrate blockchain with AI and the IoT,additional research is needed to address blockchain’s current limitations and realize its potential for supply chain intelligence.展开更多
Have you ever heard of a "refuge for stars"?Located at an average elevation of over 4,500 meters,Ngari Prefecture boasts world-class night-sky conditions due to minimal atmospheric pollution,abundant clear d...Have you ever heard of a "refuge for stars"?Located at an average elevation of over 4,500 meters,Ngari Prefecture boasts world-class night-sky conditions due to minimal atmospheric pollution,abundant clear days,high transparency,low humidity.展开更多
Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably aff...Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.展开更多
Reproducibility is a key aspect of the scientific method as it provides evidence for research claims. It is essential to promote openness, accessibility, and collaboration within the scientific community. This article...Reproducibility is a key aspect of the scientific method as it provides evidence for research claims. It is essential to promote openness, accessibility, and collaboration within the scientific community. This article aims to provide an introduction to best practices in reproducibility that are relevant to the transportation research community, to discuss issues and barriers to reproducibility, and to describe methods for addressing these issues. This article starts by discussing openness and transparency, then discusses several key best practices for reproducibility in transportation engineering, highlighting common methods and techniques, as well as the associated benefits. The paper concludes with a discussion of the key barriers to implementing reproducibility practices in transportation research and potential solutions. The barriers include existing culture and attitudes, data sensitivity, insufficient methodological detail, lack of code sharing, limited validation, additional time and research burden, and skill and knowledge gaps. Discussing each of these items provides an opportunity for the transportation research community to evolve to become one that embraces the openness and transparency of reproducibility.展开更多
As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather....As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge.We developed a facile,spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off.It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica,achieving a high visible light transmittance(>70%)and high shielding rates for ultraviolet(>90%)and near-infrared(>70%).When applied to the acrylic window of containers and placed outside,this film can cause a 10℃ temperature drop compared to a pure polymer film.Moreover,in building energy simulations,the annual energy savings could be between 14.1%~31.9%per year.The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.展开更多
Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its wor...Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect.展开更多
Polyvinyl alcohol(PVA)-based hydrogels are widely used in the fields of tissue engineering,biomedicine,and flexible sensors due to their low cost,excellent biocompatibility,and simple gelation methods.Re-peated freeze...Polyvinyl alcohol(PVA)-based hydrogels are widely used in the fields of tissue engineering,biomedicine,and flexible sensors due to their low cost,excellent biocompatibility,and simple gelation methods.Re-peated freeze-thaw cycles are essential for the preparation of such hydrogels.Although this process can enhance the mechanical properties of the hydrogels to a certain extent,it can also result in opacity and limited tensile performance,significantly restricting their application in wearable devices and electronic skin.This study introduced cellulose nanofibers into polyacrylamide(PAM)/PVA double interpenetrat-ing network hydrogel system,achieving the preparation of a multifunctional composite hydrogel with a“triple-network interlock”structure.Under the synergistic effects of multiple networks,multiple hy-drogen bonds,and nano-reinforcement,this composite hydrogel requires only a single freeze-thaw cycle to achieve a tensile strength exceeding 1 MPa,which is significantly higher than that of PVA hydro-gels subjected to multiple freeze-thaw cycles.The PVA-based hydrogel prepared in this work balances tensile strength(1.41 MPa),elongation(1332%),transparency(89.8%),and toughness(6.73 MJ m-3).Ad-ditionally,this composite hydrogel exhibits high sensitivity(GF=8.74),rapid response(108 ms),fatigue resistance,and antibacterial properties,making it a reliable strain sensor over a wide strain range.When encapsulated on human joints,it can monitor body movements in real-time,such as movements of fin-gers,wrists,elbows,and knees,and can be integrated into peripheral circuits to achieve precise real-time control of robotic hands.This work presents a multifunctional composite hydrogel with great potential as a candidate material for tissue engineering,human-machine interaction,and high-performance wearable sensors.展开更多
This study aims to analyze the challenges and implications of implementing the accrual basis in governmental accounting through a literature review approach.The method used is a systematic review of 15 scientific jour...This study aims to analyze the challenges and implications of implementing the accrual basis in governmental accounting through a literature review approach.The method used is a systematic review of 15 scientific journals,consisting of 10 national and 5 international journals published within the last five years(2019-2024).The findings reveal that the implementation of the accrual basis in Indonesia still faces several obstacles,particularly in terms of the competency of public officials,the limitations of integrated financial information systems,and inconsistencies between regulations and financial reporting practices.Nevertheless,the accrual basis has been found to improve the quality of financial information,enhance budgetary accountability,and support more efficient and transparent public financial governance.These findings are in line with practices in several countries that have successfully adopted accrual accounting in the public sector.This study recommends improving the capacity of human resources,strengthening financial information systems,and harmonizing inter-agency policies to ensure that the implementation of accrual-based accounting provides optimal benefits for public sector financial management.展开更多
In this paper,we present a metamaterial structure of Dirac and vanadium dioxide(VO_(2))and investigate its optical properties using the finite-difference time-domain(FDTD)technique.Using the phase transition feature o...In this paper,we present a metamaterial structure of Dirac and vanadium dioxide(VO_(2))and investigate its optical properties using the finite-difference time-domain(FDTD)technique.Using the phase transition feature of VO_(2),the design can realize active tuning of the plasmon induced transparency(PIT)effect at terahertz frequency,thereby converting from a single PIT to a double-PIT.When VO_(2) is in the insulating state,the structure is symmetric to obtain a single-band PIT effect.When VO_(2) is in the metallic state,the structure turns asymmetric to realize a dual-band PIT effect.This design provides a reference direction for the design of actively tunable metamaterials.Additionally,it is discovered that the transparent window's resonant frequency and the Fermi level in this structure have a somewhat linear relationship.In addition,the structure achieves superior refractive index sensitivity in the terahertz band,surpassing 1 THz/RIU.Consequently,the design exhibits encouraging potential for application in refractive index sensors and optical switches.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11204077 and 11475060)the Natural Science Foundation of Hunan Province,China(Grant No.2019JJ10002)+1 种基金the Hunan Provincial Hundred People Plan,China(2019)the Science and Technology Plan Project of Hunan Province,China.
文摘By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling(SOC)and a specific controlled parameter,we demonstrate an exactly solvable two-level model with a complete set of spin-motion entangled Schrödinger kitten(or cat)states.In the undriven case,application of a modulation resonance results in the exact stationary states.We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging positions of the probability-density wavepackets to create transitions between the different degenerate ground states.The expected energy consisting of quantum and continuous parts is derived,and the energy deviations caused by the exchange operations are much less than the quantum gap.The results could be directly extended to a weakly coupled single-particle chain for transparently encoding spin-orbit qubits via the robust spin-motion entangled degenerate ground states.
基金JSPS KAKENHI Grant Number 16H02826MEXT-Supported Program for the Strategic Research Foundation at Private Universities(2013–2017)。
文摘Transparent visualization is used in many fields because it can visualize not only the frontal object but also other important objects behind it.Although in many situations,it would be very important for the 3D structures of the visualized transparent images to be perceived as they are simulated,little is known quantitatively as to how such transparent 3D structures are perceived.To address this question,in the present study,we conducted a psychophysical experiment in which the observers reported the perceived depth magnitude of a transparent object in medical images,presented with a multiview 3D display.For the visualization,we employed a stochastic point-based rendering(SPBR)method,which was developed recently as a technique for efficient transparentrendering.Perceived depth of the transparent object was smaller than the simulated depth.We found,however,that such depth underestimation can be alleviated to some extent by(1)applying luminance gradient inherent in the SPBR method,(2)employing high opacities,and(3)introducing binocular disparity and motion parallax produced by a multi-view 3D display.
文摘黄籽油菜因菜油的外观、品质好等优势深受消费者欢迎,但后代性状分离不稳定,严重影响其大面积应用。为解析黄籽油菜性状分离不稳定的内在原因,探寻黄籽油菜中黄色籽粒和黑色籽粒之间内在生理机制存在的差异,以甘蓝型黄籽油菜(CK)为材料,对其分离后代中的黄色(Y)、黑色(B)籽粒植株的农艺性状、生理生化指标、种皮颜色相关基因等之间的表达差异开展了研究。结果表明:分离后代中,Y的根茎粗和株高均优于CK和B,B的株高分别与CK、Y呈显著差异,B的根茎粗与Y呈显著差异。Y的病害指数为1.97,CK和B的病害指数分别为2.55,3.33,表明Y在抗病性方面优于CK和B。在9—10叶期Y叶片中的丙二醛(MDA)含量最低,花期Y和CK花中的过氧化物酶(POD)活性持续上升,表明黄籽油菜抗逆能力较强。7—8叶期和9—10叶期B和Y中TT18、TT8基因的表达量均高于CK,终花期B和Y中TT18基因的表达量显著低于CK。授粉后28 d Y种子中MYB47基因的表达量最高,分别为CK的5.56倍和B的5.79倍。TT8基因在授粉后21 d的Y中表达量最高,分别为CK和B的3.30,2.29倍。黄籽油菜在含油量、抗逆等方面均有明显优势,因而大力发展黄籽油菜可为提高菜油供应量,解决我国食用油安全提供新思路。
基金supports from National Key R&D Program of China(Grant No.2023YFB4605500)National Natural Science Foundation of China(Grant No.52105498)+3 种基金Natural Science Foundation of Hunan Province(Grant No.2022JJ40597)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1132)State Key Laboratory of Precision Manufacturing for Extreme Service Performance(Grant No.ZZYJKT2023-08)support in analyzing the status of ultrafast laser welding applications,as well as the corresponding project support(Grant No.HKF202400595).
文摘The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.
基金supported by the National Natural Science Foundation of China(Grant number W2432035)financial support from the EPSRC SWIMS(EP/V039717/1)+3 种基金Royal Society(RGS\R1\221009 and IEC\NSFC\211201)Leverhulme Trust(RPG-2022-263)Ser Cymru programme–Enhancing Competitiveness Equipment Awards 2022-23(MA/VG/2715/22-PN66)the financial support from Kingdom of Saudi Arabia Ministry of Higher Education.
文摘Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out.
基金supported by a National Research Foundation of Korea(NRF)grant(No.2016R1A3B 1908249)funded by the Korean government.
文摘Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.
文摘This article explores the ethical considerations surrounding the reporting of offlabel and experimental treatments in medical case reports,with a focus on fields such as oncology,psychiatry,and pediatrics.It emphasizes the balance between innovation and evidence-based medicine,highlighting the critical role of case reports in disseminating clinical experiences and advancing medical knowledge.The discussion delves into the ethical framework guiding case reporting,including principles of patient autonomy,informed consent,non-maleficence,beneficence,justice,and transparency.Challenges such as negative outcome reporting,commercial interests,and the balance between innovation and caution are examined.Recommendations for ethical vigilance,the development of comprehensive guidelines,and the role of regulatory bodies are proposed to ensure patient safety and uphold scientific integrity.The article concludes by underscoring the importance of a collaborative effort among clinicians,researchers,ethicists,and regulatory bodies to foster the responsible advancement of medical science while adhering to the highest ethical standards.
文摘This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.
基金financially supported by the National Natural Science Foundation of China(Grant No.11872344)the Innovatory Development Foundation of the China Academy of Engineering Physics(Grant No.CX20210026).
文摘Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties of typical transparent single crystals under shock or ramp compression,which helps in the selection of appropriate optical windows for high-pressure experiments.The second involves the exploration of novel optical windows,particularly transparent polycrystalline ceramics,which not only match the shock impedance of the samples,but also preserve transparency under dynamic compression.In this study,we first integrate existing research on the evolution of optical properties in transparent single crystals and polycrystalline ceramics subjected to shock or ramp loading,proposing a mechanism that links mesoscopic damage to macroscopic optical transparency.Subsequently,through a systematic integration of experiments and computational analyses on polycrystalline transparent ceramics,we demonstrate that shock transparency can be enhanced by optimizing grain size and that shock impedance can be designed via compositional tuning.Notably,our results reveal that nano-grained MgAl_(2)O_(4) ceramics exhibit outstanding optical transparency under high shock pressures,highlighting a promising strategy for designing optical windows that retain transparency under extreme dynamic loading conditions.
文摘Measuring the impact of AI systems The recent 2025 AI Index Report from Stanford University revealed that skepticism about the ethical conduct of AI companies is growing,and trust in fairness is shrinking.There is also less confidence that personal data will be protected and fewer people believe AI systems are unbiased and free of discrimination.Trust and transparency are essential for AI to deliver on its promises in a safe and responsible way.Governments are stepping up with new AI-related regulations,and international standards such as ISO/IEC 42001 have been developed to support them,but a lot more needs to be done to reduce potential risks and address societal concerns.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘Blockchain Technology(BT)has emerged as a transformative solution for improving the efficacy,security,and transparency of supply chain intelligence.Traditional Supply Chain Management(SCM)systems frequently have problems such as data silos,a lack of visibility in real time,fraudulent activities,and inefficiencies in tracking and traceability.Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues;it facilitates trust,security,and the sharing of data in real-time among all parties involved.Through an examination of critical technologies,methodology,and applications,this paper delves deeply into computer modeling based-blockchain framework within supply chain intelligence.The effect of BT on SCM is evaluated by reviewing current research and practical applications in the field.As part of the process,we delved through the research on blockchain-based supply chain models,smart contracts,Decentralized Applications(DApps),and how they connect to other cutting-edge innovations like Artificial Intelligence(AI)and the Internet of Things(IoT).To quantify blockchain’s performance,the study introduces analytical models for efficiency improvement,security enhancement,and scalability,enabling computational assessment and simulation of supply chain scenarios.These models provide a structured approach to predicting system performance under varying parameters.According to the results,BT increases efficiency by automating transactions using smart contracts,increases security by using cryptographic techniques,and improves transparency in the supply chain by providing immutable records.Regulatory concerns,challenges with interoperability,and scalability all work against broad adoption.To fully automate and intelligently integrate blockchain with AI and the IoT,additional research is needed to address blockchain’s current limitations and realize its potential for supply chain intelligence.
文摘Have you ever heard of a "refuge for stars"?Located at an average elevation of over 4,500 meters,Ngari Prefecture boasts world-class night-sky conditions due to minimal atmospheric pollution,abundant clear days,high transparency,low humidity.
基金Projects(52105175,52305149)supported by the National Natural Science Foundation of ChinaProject(2242024RCB0035)supported by the Zhishan Young Scholar Program of Southeast University,China+5 种基金Project(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2023MK042)supported by the State Administration for Market Regulation,ChinaProject(KJ2023003)supported by the Jiangsu Administration for Market Regulation,ChinaProjects(KJ(Y)202429,KJ(YJ)2023001)supported by the Jiangsu Province Special Equipment Safety Supervision Inspection Institute,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,ChinaProject(1102002310)supported by the Technology Innovation Project for Returnees in Nanjing,China。
文摘Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.
文摘Reproducibility is a key aspect of the scientific method as it provides evidence for research claims. It is essential to promote openness, accessibility, and collaboration within the scientific community. This article aims to provide an introduction to best practices in reproducibility that are relevant to the transportation research community, to discuss issues and barriers to reproducibility, and to describe methods for addressing these issues. This article starts by discussing openness and transparency, then discusses several key best practices for reproducibility in transportation engineering, highlighting common methods and techniques, as well as the associated benefits. The paper concludes with a discussion of the key barriers to implementing reproducibility practices in transportation research and potential solutions. The barriers include existing culture and attitudes, data sensitivity, insufficient methodological detail, lack of code sharing, limited validation, additional time and research burden, and skill and knowledge gaps. Discussing each of these items provides an opportunity for the transportation research community to evolve to become one that embraces the openness and transparency of reproducibility.
基金financially supported by the Natural Science Foundation of Henan(242300421010)National Natural Science Foundation of China(52403055).
文摘As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge.We developed a facile,spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off.It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica,achieving a high visible light transmittance(>70%)and high shielding rates for ultraviolet(>90%)and near-infrared(>70%).When applied to the acrylic window of containers and placed outside,this film can cause a 10℃ temperature drop compared to a pure polymer film.Moreover,in building energy simulations,the annual energy savings could be between 14.1%~31.9%per year.The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.
基金supported by the National Natural Science Foundation of China(Nos.62374035,92263106,12061131009)the Science and Technology Commission of Shanghai Municipality(No.21520712600).
文摘Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect.
基金supported by the National Key Research and Development Program(No.2022YFB3304000)the National Natural Science Foundation of China(No.52275292)+5 种基金the Fundamental Research Funds for the Central Universities(No.D5000240313)the Key Research and Development Program of Shaanxi Province(No.2022GY-228)the Science and technology planning project of Xian(No.20KYPT0002-1)the Fundamental Research Funds for the Central Universities(Nos.D5000230084 and 3102022gxb002)the Shaanxi Province Key Research and Development Projects(Nos.2021LLRH08 and 2022GXLH-02-15)the Emerging Interdisciplinary Project of Northwestern Polytechnical University(No.22GH0306).
文摘Polyvinyl alcohol(PVA)-based hydrogels are widely used in the fields of tissue engineering,biomedicine,and flexible sensors due to their low cost,excellent biocompatibility,and simple gelation methods.Re-peated freeze-thaw cycles are essential for the preparation of such hydrogels.Although this process can enhance the mechanical properties of the hydrogels to a certain extent,it can also result in opacity and limited tensile performance,significantly restricting their application in wearable devices and electronic skin.This study introduced cellulose nanofibers into polyacrylamide(PAM)/PVA double interpenetrat-ing network hydrogel system,achieving the preparation of a multifunctional composite hydrogel with a“triple-network interlock”structure.Under the synergistic effects of multiple networks,multiple hy-drogen bonds,and nano-reinforcement,this composite hydrogel requires only a single freeze-thaw cycle to achieve a tensile strength exceeding 1 MPa,which is significantly higher than that of PVA hydro-gels subjected to multiple freeze-thaw cycles.The PVA-based hydrogel prepared in this work balances tensile strength(1.41 MPa),elongation(1332%),transparency(89.8%),and toughness(6.73 MJ m-3).Ad-ditionally,this composite hydrogel exhibits high sensitivity(GF=8.74),rapid response(108 ms),fatigue resistance,and antibacterial properties,making it a reliable strain sensor over a wide strain range.When encapsulated on human joints,it can monitor body movements in real-time,such as movements of fin-gers,wrists,elbows,and knees,and can be integrated into peripheral circuits to achieve precise real-time control of robotic hands.This work presents a multifunctional composite hydrogel with great potential as a candidate material for tissue engineering,human-machine interaction,and high-performance wearable sensors.
文摘This study aims to analyze the challenges and implications of implementing the accrual basis in governmental accounting through a literature review approach.The method used is a systematic review of 15 scientific journals,consisting of 10 national and 5 international journals published within the last five years(2019-2024).The findings reveal that the implementation of the accrual basis in Indonesia still faces several obstacles,particularly in terms of the competency of public officials,the limitations of integrated financial information systems,and inconsistencies between regulations and financial reporting practices.Nevertheless,the accrual basis has been found to improve the quality of financial information,enhance budgetary accountability,and support more efficient and transparent public financial governance.These findings are in line with practices in several countries that have successfully adopted accrual accounting in the public sector.This study recommends improving the capacity of human resources,strengthening financial information systems,and harmonizing inter-agency policies to ensure that the implementation of accrual-based accounting provides optimal benefits for public sector financial management.
基金supported by the Natural Science Foundation of Chongqing of China(No.CSTB2024NSCQ-MSX0746)the Young Scientists Fund of the National Natural Science Foundation of China(No.11704053)+1 种基金the National Natural Science Foundation of China(No.52175531)the Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJQN 201800629,KJZD-M202000602 and 62375031)。
文摘In this paper,we present a metamaterial structure of Dirac and vanadium dioxide(VO_(2))and investigate its optical properties using the finite-difference time-domain(FDTD)technique.Using the phase transition feature of VO_(2),the design can realize active tuning of the plasmon induced transparency(PIT)effect at terahertz frequency,thereby converting from a single PIT to a double-PIT.When VO_(2) is in the insulating state,the structure is symmetric to obtain a single-band PIT effect.When VO_(2) is in the metallic state,the structure turns asymmetric to realize a dual-band PIT effect.This design provides a reference direction for the design of actively tunable metamaterials.Additionally,it is discovered that the transparent window's resonant frequency and the Fermi level in this structure have a somewhat linear relationship.In addition,the structure achieves superior refractive index sensitivity in the terahertz band,surpassing 1 THz/RIU.Consequently,the design exhibits encouraging potential for application in refractive index sensors and optical switches.