期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural, Optical and Electrical Properties of Ga Doped ZnO/Cu grid/Ga Doped ZnO Transparent Electrodes 被引量:2
1
作者 Cholho Jang Qingjun Jiang +1 位作者 Jianguo Lu Zhizhen Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1108-1110,共3页
Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering f... Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering for the GZO layers. In this work, we investigated the electrical and optical characteristics of GZO/Cu grid/GZO multilayer electrode for thin film solar cells by using evaporated Cu grid and sputtered GZO thin films to enhance the optical transparency without significantly affecting their conductivity. The optical transmittance and sheet resistance of GZO/Cu grid/GZO multilayer are higher than those of GZO/Cu film/GZO multilayer independent of Cu grid separation distance and increase with increasing Cu grid separation distances. The calculation of both transmittance and sheet resistance of GZO/Cu grid] GZO multilayer was based on Cu filling factor correlated with the geometry of Cu grid. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid/GZO multilayer were similar to the experimentally observed ones. The highest figure of merit ФTc is 5.18× 10^-3Ω^-1 for the GZO/Cu grid] GZO multilayer with Cu grid separation distance of 1 mm was obtained, in this case, the transmittance and resistivity were 82.72% and 2.17 × 10 ^-4Ωcm, respectively. The transmittance and resistivity are accentahle for nractical thin film snlar cell annlicatinn~ 展开更多
关键词 transparent electrode Electron beam evaporation Cu grid Ga doped ZnO Multilayer film
原文传递
Learning-based Data Analytics:Moving Towards Transparent Power Grids 被引量:8
2
作者 Kunjin Chen Ziyu He +3 位作者 Shan X.Wang Jun Hu Licheng Li Jinliang He 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第1期67-82,共16页
this paper,we present the learning-based data analytics moving towards transparent power grids and provide some possible extensions including machine learning,big data analytics,and knowledge transferring.The closed ... this paper,we present the learning-based data analytics moving towards transparent power grids and provide some possible extensions including machine learning,big data analytics,and knowledge transferring.The closed loops of data and knowledge are illustrated and the challenges for establishing the closed loops are discussed.General ideas and recent developments in supervised learning,unsupervised learning,and reinforcement learning are presented together with extensions for power system applications.Furthermore,much emphasis is placed on privacypreserving data analysis,transfer of knowledge,machine learning for causal inference,scalability and flexibility of data analytics,and efficiency and reliability of computation.Existing integrated solutions in the industry featuring the Industrial Internet and the digital grid are also introduced. 展开更多
关键词 Data analytics machine learning smart grid transparent power grid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部