Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties ...Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties of typical transparent single crystals under shock or ramp compression,which helps in the selection of appropriate optical windows for high-pressure experiments.The second involves the exploration of novel optical windows,particularly transparent polycrystalline ceramics,which not only match the shock impedance of the samples,but also preserve transparency under dynamic compression.In this study,we first integrate existing research on the evolution of optical properties in transparent single crystals and polycrystalline ceramics subjected to shock or ramp loading,proposing a mechanism that links mesoscopic damage to macroscopic optical transparency.Subsequently,through a systematic integration of experiments and computational analyses on polycrystalline transparent ceramics,we demonstrate that shock transparency can be enhanced by optimizing grain size and that shock impedance can be designed via compositional tuning.Notably,our results reveal that nano-grained MgAl_(2)O_(4) ceramics exhibit outstanding optical transparency under high shock pressures,highlighting a promising strategy for designing optical windows that retain transparency under extreme dynamic loading conditions.展开更多
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint...A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.展开更多
Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in ...Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
Polycrystalline Nd3+ and La3+ co-doped yttria nanopowder Nd3+:Y1.90La0.10O3 for transparent ceramics was synthesized by co-precipitation method using oxalate acid as the precipitant and(NH4)2SO4 as the electrical stab...Polycrystalline Nd3+ and La3+ co-doped yttria nanopowder Nd3+:Y1.90La0.10O3 for transparent ceramics was synthesized by co-precipitation method using oxalate acid as the precipitant and(NH4)2SO4 as the electrical stabilizer under ultrasonic radiation.Nanopowders calcined at different temperatures were characterized with thermal gravimetric-differential thermal analysis(TG/DTA),X-ray diffraction(XRD),transmitting electron microscopy(TEM),energy dispersive spectrometry(EDS) and spectral analysis techniques.Th...展开更多
Compared with Y_(3)Al_(5)O_(12):Ce^(3+),Y3MgAl3SiO12:Ce^(3+)(YMASG:Ce^(3+))reveals great potential for highpower white lighting with red-shift spectrum.Herein,YMASG:Ce^(3+)transparent ceramics were explored to be synt...Compared with Y_(3)Al_(5)O_(12):Ce^(3+),Y3MgAl3SiO12:Ce^(3+)(YMASG:Ce^(3+))reveals great potential for highpower white lighting with red-shift spectrum.Herein,YMASG:Ce^(3+)transparent ceramics were explored to be synthesized in the air following hot isostatic pressure(HIP)treatment to obtain tunable and optimized optical properties.Then phase purity,microstructure,transmittance,and photoluminescence of YMASG:Ce^(3+)ceramics were investigated.The emission peak of YMASG:Ce^(3+)transparent ceramic can be tuned from 573 to 592 nm with the variation of Ce^(3+)doping concentration.It should be noted that this YMASG:0.2 at%Ce^(3+)transparent ceramic with emission peak at 579 nm under 450 nm excitation exhibits the highest internal/external quantum efficiency(72%/65%).The white LED device using YMASG:0.2 at%Ce^(3+)transparent ceramic with a 0.4 mm thickness demonstrates a luminous efficiency(LE)of 106 lm/W,correlated color temperature of 3158 K,and color coordinate(0.3933,0.3265).Thermal stability can be significantly imporoved by the incorporation of Lu^(3+)in YMASG transparent ceramic,and the Y3-yLuyMgAl3SiO12:0.2 at/Ce^(3+)(y=0-2.5)transparent ceramics were fabricated.The highest thermal stability(88%@150℃of the integrated emission intensity at 25℃)can be achieved wheny=2.5.The maximum LE of 154 Im/W can be obtained from Y_(0.5)Lu_(2.5)MgAl_(3)SiO_(12):0.2 at%Ce^(3+)transparent ceramic.These results indicate that YMASG:Ce^(3+)transparent ceramics with optimized properties can be regarded as an encouraging candidate for highpower white lighting.展开更多
Cerium-doped nonstoichiometric (Ce,Lu, Gd)3+δ,(Ga,A1)5-δO12 (LuGGAG) transparent garnet ceramic samples were fabricated via a solid state reaction method in this study. The ceramics were prepared via oxygen s...Cerium-doped nonstoichiometric (Ce,Lu, Gd)3+δ,(Ga,A1)5-δO12 (LuGGAG) transparent garnet ceramic samples were fabricated via a solid state reaction method in this study. The ceramics were prepared via oxygen sintering followed by hot isostatic pressing (HIP). The phase and microstructure of the samples were analyzed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The excitation, emission and transmission spectra were also measured. The total optical transmittance of the annealed LuGGAG ceramics with thickness of 3 mm reached 47% at the emission wavelength of 555 nm. The decay time was about 60 ns. Compact microstructure of polycrystalline grains with scale around 5 μm were gained according to scanning electron microscopy characterization. The successful preparation of the bulk ceramic material and implementation of the combined oxygen sintering-hot isostatie pressing treatment process provided an important method for the exploration of nonstoichiometrie scintillator material.展开更多
Pe rsistent luminescence(Pers L)materials are widely used in safety indication,traffic and transportation signs,architectural decoration and other fields.In this paper,(Y_(1-x)Ce_(x))(Al_(0.9995)Cr_(0.0005))_(2)Ga_(3)...Pe rsistent luminescence(Pers L)materials are widely used in safety indication,traffic and transportation signs,architectural decoration and other fields.In this paper,(Y_(1-x)Ce_(x))(Al_(0.9995)Cr_(0.0005))_(2)Ga_(3)O_(12)(x=0.001,0.002,0.003,0.005)transparent ceramics were successfully prepared by solid-state reaction method in air followed by HIP post-treatment.With the increase of Cedoping concentration,the optical quality of the as-prepared ceramics is improved and the morphology is denser.Luminescent quenching occurs when the Ceconcentration is more than 0.2%.The as-prepared transparent ceramics we re annealed in different atmosphere s.From the PersL decay curve s,the transparent ce ramics after air annealing show the best PersL performance:luminance with 4424.0 mcd/m^(2)and PersL duration over865 min after ceasing 365 nm excitation,respectively.The effects of Cedoping concentration and annealing atmospheres are also discussed in detail.展开更多
We investigated photoluminescence (PL) and scintillation properties of Ce3+-doped Y3A12Ga3OI2 (Ce:YAGG) trans- parent ceramics synthesized by vacuum sintering with different Ce3+ concentrations (mol.%) from 0...We investigated photoluminescence (PL) and scintillation properties of Ce3+-doped Y3A12Ga3OI2 (Ce:YAGG) trans- parent ceramics synthesized by vacuum sintering with different Ce3+ concentrations (mol.%) from 0.3% to 1% (0.3%Ce:YAGG, 0.5%Ce:YAGG, 0.8%Ce:YAGG and I%Ce:YAGG). The samples were synthesized by the vacuum sintering technique. The obtained samples showed a very strong and broad PL emission by the 5dl-4f transition of Ce3+ in the wavelength range from 470 to 600 nm. The PL decay profiles were approximated by a single exponential decay function with the time constants of around 33-39 ns, Fur- thermore, the scintillation spectra induced by X-rays showed similar features with those observed in PL. The scintillation decay time profiles followed a second-order exponential decay function. The fast component group (ranged 3542 ns) were dominantly contrib- uted by the 5d1-4f transition of Ce3+. The pulse height spectra utilizing the latter emissions showed a clear photoabsorption peak. Among those samples tested, 0.5%Ce:YAGG sample showed the highest scintillation light yield of 21,400 ph/MeV under 13VCs y-ray irradiation.展开更多
Yb:YAG nanopowders were synthesized by the alcohol-water co-precipitatlon method adding MgO as sintering additives. Appropriate amount of MgO adding can restrict the agglomeration and reduce the particle size of Yb:...Yb:YAG nanopowders were synthesized by the alcohol-water co-precipitatlon method adding MgO as sintering additives. Appropriate amount of MgO adding can restrict the agglomeration and reduce the particle size of Yb:YAG powders. When the MgO content was 0.04wt%, well-dispersed Yb:YAG powders with ellipsoidal particles of less than 100 nm diameter were obtained. The experimental results showed the valence variation of doping ion Yb〉 would not appear when adding MgO as sintering additives, so ceramics showed colorless transparent instead of green due to Yb^2+ color center using traditional SiO2 as additives. The transmission of the sintered Yb:YAG ceramics can reach 80.6% even without annealing. Ceramic morphology showed that the grains had uniform-distribution with the size of 10 iam or so, and no impurity and pore existed in the grain boundary and crystalline while using optimal sintering conditions.展开更多
YAG (Y_(3)Al_(5)O_(12)) transparent ceramics have attractive application prospects for transparent armor protection modules because of their excellent light transmittance and anti-ballistic capability. Understanding t...YAG (Y_(3)Al_(5)O_(12)) transparent ceramics have attractive application prospects for transparent armor protection modules because of their excellent light transmittance and anti-ballistic capability. Understanding the fracture behavior and damage mechanism of YAG is necessary for armor design. To explore the damage characteristics of YAG under compression and tension, shock compression and shockless spalling experiments with soft recovery technique are conducted. The spall strength of YAG is obtained and the recovered samples are observed by CT and SEM. It is shown that the macroscopic damage characteristic of YAG under compression is vertical split cracks with oblique fine cracks distributed in the entire sample, while that under tension is horizontal transgranular cracks concentrated near the main spall surface. The cracks generated by macroscopic compression, tension and shear stress extend in similar tensile form at the microscale. The proportion of transgranular fractures on spall surfaces is higher than that of cracks induced by macroscopic compression. Meanwhile, higher loading rate and longer loading duration increase the transgranular fracture percentage.展开更多
The effects of different sintering addictives on the preparation of CaF2 transparent ceramics were studied. Transparent CaF2 ceramics were fabricated by vacuum sintering and hot isostatic pressing (HIP) method, usin...The effects of different sintering addictives on the preparation of CaF2 transparent ceramics were studied. Transparent CaF2 ceramics were fabricated by vacuum sintering and hot isostatic pressing (HIP) method, using CaF2 nanopowders synthesized by chemical precipitation method as raw materials. The nanopowders and transparent ceramics were studied using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectrophotometer. The experimental results indicated that the obtained nanopowders presented normal distribution with grain size about 30 nm; transmittance of CaF2 transparent ceramics was 39% and 26% at 1100 nm for LiF and NaF as sintering addictives, respectively, with corresponding mean grain size 188 μm and 44 μm. Loss of transmission could be attributed to the residual closed porosity. Sintering mechanism was liquid-phase sintering at pre-stage, then solid-phase sintering at later stage, as well as solid solution of lithium ions and sodium ions in the CaF2 lattice structure.展开更多
Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism bet...Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.展开更多
Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light tra...Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance and field emission gun-environment scanning microscope. Using statistics and stereology theory, study was carried out on the quantitative relationships between light transmittance and stereological parameters in three-dimensional Euclidean space. It is found that the transmittance of Nd:YAG with 1 mm in thickness is about 45% and 58% in visible and near-infrared wavelength, respectively. The transmittance linearly increases with increasing equivalent sphere diameter and reaches the theoretical value of single crystal when the equivalent sphere diameter is 20μm. The transmittance decreases with the increasing of mean specific area per unit volume of grain and discrete grains, and the transmittance decreases with increasing mean free distance of grains in Nd:YAG ceramics.展开更多
The precursor powders of LuAG∶Ce3+ transparent ceramics were synthesized by solvo-thermal method.The crystal structure and morphology of powders were analyzed by means of Fourier transform infra-red spectroscopy,X-ra...The precursor powders of LuAG∶Ce3+ transparent ceramics were synthesized by solvo-thermal method.The crystal structure and morphology of powders were analyzed by means of Fourier transform infra-red spectroscopy,X-ray diffraction and scanning electron microscopy.The precursor powders were sintered into transparent ceramics in vacuum and then in nitrogen without any additive.The surface morphology of the transparent unpolished ceramics was characterized using scanning electron microscopy.Some factors that affect the transparency of ceramics were discussed.The UV-Vis fluorescence excitation and emission spectra of LuAG∶Ce3+ transparent ceramics were measured.The vacuum ultraviolet spectra of transparent ceramics were investigated using the synchrotron radiation as the excitation source.The excitation mechanism of Ce3+ was discussed at different excitation wavelength.展开更多
Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained a...Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained after 1840℃ sintefing. Using transmitted-light microscope we get the grain sizes are more than 100μm. Using spectrophotometer we get the absorption coefficient centered at 975 nm was 2.65 cm-1. The phosphorescence spectra showed that the line-widths (FWHM) at 975 and 1041 nm were about 4 and 10 nm and the lifetime of Yb ions in Sc2O3 transparent ceramics was about 883 μs. According to the absorption and fluorescence band centers of Yb:Sc2O3 transparent ceramics, the level scheme of Yb3+ ions in Sc2O3 ceramics could be gotten.展开更多
YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. T...YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. The mixed powder compact was sintered at 1760 ℃ for 6 h in vacuum and annealed at 1500 ℃ for 10 h in an air atmosphere. The ceramics consisted of about 10μm grains and exhibited a pore-free structure. The optical transmittance of the ceramics at 1064 nm was nearly 80%. Upconversion emissions were investigated on the ceramics pumped by a 980 nm continuous wave diode laser, and strong green emission centered at 523 and 559 nm and red emission centered at 669 nm were observed, which originated from the radiative transitions of ^2H11/2→^4I15/2, ^4S3/2→^4I15/2, and ^4F9/2→^4I15/2 of Er^3+ ions, respectively.展开更多
Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmit...Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.展开更多
Oxygen-assisted high temperature solid-state reaction approach was employed for the fabrication of Pr activated Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramic phosphor.Retiveld refinement of X-ray diffraction...Oxygen-assisted high temperature solid-state reaction approach was employed for the fabrication of Pr activated Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramic phosphor.Retiveld refinement of X-ray diffraction pattern was carried out to reveal the lattice parameters and crystal structural information.Under the blue-light excitation ofλ=473 nm,the phosphor exhibits a sharp intense red emission centered at645 nm,accompanied by several other weak peaks.PL evolution with temperature shows a significant luminescence quenching behavior,and the underlying multi-phonon interaction with optical center is revealed by proposing an unprecedent theoretical calculation work.Such a phonon effect is further confirmed from the red-shift of peak position with temperature,and the involved phonon energy of50.7 meV is determined from Raman scattering measurement.More interestingly,the fitted results of transient-state PL spectra show a fluctuation of luminescence lifetime at various temperatures,further indicating a significant effect of phonon vibration in the system.展开更多
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.
基金financially supported by the National Natural Science Foundation of China(Grant No.11872344)the Innovatory Development Foundation of the China Academy of Engineering Physics(Grant No.CX20210026).
文摘Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties of typical transparent single crystals under shock or ramp compression,which helps in the selection of appropriate optical windows for high-pressure experiments.The second involves the exploration of novel optical windows,particularly transparent polycrystalline ceramics,which not only match the shock impedance of the samples,but also preserve transparency under dynamic compression.In this study,we first integrate existing research on the evolution of optical properties in transparent single crystals and polycrystalline ceramics subjected to shock or ramp loading,proposing a mechanism that links mesoscopic damage to macroscopic optical transparency.Subsequently,through a systematic integration of experiments and computational analyses on polycrystalline transparent ceramics,we demonstrate that shock transparency can be enhanced by optimizing grain size and that shock impedance can be designed via compositional tuning.Notably,our results reveal that nano-grained MgAl_(2)O_(4) ceramics exhibit outstanding optical transparency under high shock pressures,highlighting a promising strategy for designing optical windows that retain transparency under extreme dynamic loading conditions.
基金Funded by the National Natural Science Foundation of China(No.52272072)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-13)。
文摘A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.
基金National Key R&D Program of China(2023YFB3507400)。
文摘Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.
基金supported by the Science and Technology Development Program of Jilin Province (20080511)
文摘Polycrystalline Nd3+ and La3+ co-doped yttria nanopowder Nd3+:Y1.90La0.10O3 for transparent ceramics was synthesized by co-precipitation method using oxalate acid as the precipitant and(NH4)2SO4 as the electrical stabilizer under ultrasonic radiation.Nanopowders calcined at different temperatures were characterized with thermal gravimetric-differential thermal analysis(TG/DTA),X-ray diffraction(XRD),transmitting electron microscopy(TEM),energy dispersive spectrometry(EDS) and spectral analysis techniques.Th...
基金supported by the National Natural Science Foundation of China(51972304,51971208)Beijing Municipal Science and Technology Project(Z191100004819002)The Project of Scientific Experiment on Chinese Manned Space Station,China。
文摘Compared with Y_(3)Al_(5)O_(12):Ce^(3+),Y3MgAl3SiO12:Ce^(3+)(YMASG:Ce^(3+))reveals great potential for highpower white lighting with red-shift spectrum.Herein,YMASG:Ce^(3+)transparent ceramics were explored to be synthesized in the air following hot isostatic pressure(HIP)treatment to obtain tunable and optimized optical properties.Then phase purity,microstructure,transmittance,and photoluminescence of YMASG:Ce^(3+)ceramics were investigated.The emission peak of YMASG:Ce^(3+)transparent ceramic can be tuned from 573 to 592 nm with the variation of Ce^(3+)doping concentration.It should be noted that this YMASG:0.2 at%Ce^(3+)transparent ceramic with emission peak at 579 nm under 450 nm excitation exhibits the highest internal/external quantum efficiency(72%/65%).The white LED device using YMASG:0.2 at%Ce^(3+)transparent ceramic with a 0.4 mm thickness demonstrates a luminous efficiency(LE)of 106 lm/W,correlated color temperature of 3158 K,and color coordinate(0.3933,0.3265).Thermal stability can be significantly imporoved by the incorporation of Lu^(3+)in YMASG transparent ceramic,and the Y3-yLuyMgAl3SiO12:0.2 at/Ce^(3+)(y=0-2.5)transparent ceramics were fabricated.The highest thermal stability(88%@150℃of the integrated emission intensity at 25℃)can be achieved wheny=2.5.The maximum LE of 154 Im/W can be obtained from Y_(0.5)Lu_(2.5)MgAl_(3)SiO_(12):0.2 at%Ce^(3+)transparent ceramic.These results indicate that YMASG:Ce^(3+)transparent ceramics with optimized properties can be regarded as an encouraging candidate for highpower white lighting.
基金supported by the National Natural Science Foundation of China(NSFC11404351,51402317)Ningbo Municipal Natural Science Foundation(2014A610007,2014A610014,2014A610122)Ningbo Science and Technology Innovation Team(2014B82004)
文摘Cerium-doped nonstoichiometric (Ce,Lu, Gd)3+δ,(Ga,A1)5-δO12 (LuGGAG) transparent garnet ceramic samples were fabricated via a solid state reaction method in this study. The ceramics were prepared via oxygen sintering followed by hot isostatic pressing (HIP). The phase and microstructure of the samples were analyzed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The excitation, emission and transmission spectra were also measured. The total optical transmittance of the annealed LuGGAG ceramics with thickness of 3 mm reached 47% at the emission wavelength of 555 nm. The decay time was about 60 ns. Compact microstructure of polycrystalline grains with scale around 5 μm were gained according to scanning electron microscopy characterization. The successful preparation of the bulk ceramic material and implementation of the combined oxygen sintering-hot isostatie pressing treatment process provided an important method for the exploration of nonstoichiometrie scintillator material.
基金Project supported by the National Key R&D Program of China(2021YFE0104800)Joint Funds of the National Natural Science Foundation of China(U1932160)National Center for Research and Development(WPC2/1/SCAPOL/2021)。
文摘Pe rsistent luminescence(Pers L)materials are widely used in safety indication,traffic and transportation signs,architectural decoration and other fields.In this paper,(Y_(1-x)Ce_(x))(Al_(0.9995)Cr_(0.0005))_(2)Ga_(3)O_(12)(x=0.001,0.002,0.003,0.005)transparent ceramics were successfully prepared by solid-state reaction method in air followed by HIP post-treatment.With the increase of Cedoping concentration,the optical quality of the as-prepared ceramics is improved and the morphology is denser.Luminescent quenching occurs when the Ceconcentration is more than 0.2%.The as-prepared transparent ceramics we re annealed in different atmosphere s.From the PersL decay curve s,the transparent ce ramics after air annealing show the best PersL performance:luminance with 4424.0 mcd/m^(2)and PersL duration over865 min after ceasing 365 nm excitation,respectively.The effects of Cedoping concentration and annealing atmospheres are also discussed in detail.
文摘We investigated photoluminescence (PL) and scintillation properties of Ce3+-doped Y3A12Ga3OI2 (Ce:YAGG) trans- parent ceramics synthesized by vacuum sintering with different Ce3+ concentrations (mol.%) from 0.3% to 1% (0.3%Ce:YAGG, 0.5%Ce:YAGG, 0.8%Ce:YAGG and I%Ce:YAGG). The samples were synthesized by the vacuum sintering technique. The obtained samples showed a very strong and broad PL emission by the 5dl-4f transition of Ce3+ in the wavelength range from 470 to 600 nm. The PL decay profiles were approximated by a single exponential decay function with the time constants of around 33-39 ns, Fur- thermore, the scintillation spectra induced by X-rays showed similar features with those observed in PL. The scintillation decay time profiles followed a second-order exponential decay function. The fast component group (ranged 3542 ns) were dominantly contrib- uted by the 5d1-4f transition of Ce3+. The pulse height spectra utilizing the latter emissions showed a clear photoabsorption peak. Among those samples tested, 0.5%Ce:YAGG sample showed the highest scintillation light yield of 21,400 ph/MeV under 13VCs y-ray irradiation.
基金Funded by the National Natural Science Foundation of China(Nos.50872083,51002098and11145006)the Doctoral Program of Higher Education(No.20090181120092)the National High Technology Research and Development Program(863)(JG2011094)
文摘Yb:YAG nanopowders were synthesized by the alcohol-water co-precipitatlon method adding MgO as sintering additives. Appropriate amount of MgO adding can restrict the agglomeration and reduce the particle size of Yb:YAG powders. When the MgO content was 0.04wt%, well-dispersed Yb:YAG powders with ellipsoidal particles of less than 100 nm diameter were obtained. The experimental results showed the valence variation of doping ion Yb〉 would not appear when adding MgO as sintering additives, so ceramics showed colorless transparent instead of green due to Yb^2+ color center using traditional SiO2 as additives. The transmission of the sintered Yb:YAG ceramics can reach 80.6% even without annealing. Ceramic morphology showed that the grains had uniform-distribution with the size of 10 iam or so, and no impurity and pore existed in the grain boundary and crystalline while using optimal sintering conditions.
基金This work is funded by the National Natural Science Foundation of China(No.11772159)the NSAF Joint Fund(No.U1730101)the Fundamental Research Funds for the Central Universities(No.30917011104).
文摘YAG (Y_(3)Al_(5)O_(12)) transparent ceramics have attractive application prospects for transparent armor protection modules because of their excellent light transmittance and anti-ballistic capability. Understanding the fracture behavior and damage mechanism of YAG is necessary for armor design. To explore the damage characteristics of YAG under compression and tension, shock compression and shockless spalling experiments with soft recovery technique are conducted. The spall strength of YAG is obtained and the recovered samples are observed by CT and SEM. It is shown that the macroscopic damage characteristic of YAG under compression is vertical split cracks with oblique fine cracks distributed in the entire sample, while that under tension is horizontal transgranular cracks concentrated near the main spall surface. The cracks generated by macroscopic compression, tension and shear stress extend in similar tensile form at the microscale. The proportion of transgranular fractures on spall surfaces is higher than that of cracks induced by macroscopic compression. Meanwhile, higher loading rate and longer loading duration increase the transgranular fracture percentage.
基金Funded by the National Natural Science Foundation of China (No. 51072144)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (No. 2009-ZT-1)
文摘The effects of different sintering addictives on the preparation of CaF2 transparent ceramics were studied. Transparent CaF2 ceramics were fabricated by vacuum sintering and hot isostatic pressing (HIP) method, using CaF2 nanopowders synthesized by chemical precipitation method as raw materials. The nanopowders and transparent ceramics were studied using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectrophotometer. The experimental results indicated that the obtained nanopowders presented normal distribution with grain size about 30 nm; transmittance of CaF2 transparent ceramics was 39% and 26% at 1100 nm for LiF and NaF as sintering addictives, respectively, with corresponding mean grain size 188 μm and 44 μm. Loss of transmission could be attributed to the residual closed porosity. Sintering mechanism was liquid-phase sintering at pre-stage, then solid-phase sintering at later stage, as well as solid solution of lithium ions and sodium ions in the CaF2 lattice structure.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)+1 种基金the Key Basic Research Project of Science and Technology Commission of Shanghai,China (Grant No. 09JC1406500)the Graduate Student Innovation Fund of Shanghai University,China (Grant No. SHUCX120058)
文摘Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.
基金Project supported by Key Science and Technology of Chinese Ministry of Education (205037)
文摘Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance and field emission gun-environment scanning microscope. Using statistics and stereology theory, study was carried out on the quantitative relationships between light transmittance and stereological parameters in three-dimensional Euclidean space. It is found that the transmittance of Nd:YAG with 1 mm in thickness is about 45% and 58% in visible and near-infrared wavelength, respectively. The transmittance linearly increases with increasing equivalent sphere diameter and reaches the theoretical value of single crystal when the equivalent sphere diameter is 20μm. The transmittance decreases with the increasing of mean specific area per unit volume of grain and discrete grains, and the transmittance decreases with increasing mean free distance of grains in Nd:YAG ceramics.
基金Project supported by National Nature Science Foundation of China(10774140)Knowledge Innovation Project of The Chinese Academy of Sciences(KJCX2-YW-M11)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20060358054)Special Foundation for Talents of Anhui Province,China(2007Z021)
文摘The precursor powders of LuAG∶Ce3+ transparent ceramics were synthesized by solvo-thermal method.The crystal structure and morphology of powders were analyzed by means of Fourier transform infra-red spectroscopy,X-ray diffraction and scanning electron microscopy.The precursor powders were sintered into transparent ceramics in vacuum and then in nitrogen without any additive.The surface morphology of the transparent unpolished ceramics was characterized using scanning electron microscopy.Some factors that affect the transparency of ceramics were discussed.The UV-Vis fluorescence excitation and emission spectra of LuAG∶Ce3+ transparent ceramics were measured.The vacuum ultraviolet spectra of transparent ceramics were investigated using the synchrotron radiation as the excitation source.The excitation mechanism of Ce3+ was discussed at different excitation wavelength.
基金supported by Major Program of the National Natural Science Foundation of China (50990300, 51102257)National Science Foundation for Post-doctoral Scientists of China (200801207)Natural Science Foundation of Shanghai, China (09ZR1435600, 10JC1416000)
文摘Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained after 1840℃ sintefing. Using transmitted-light microscope we get the grain sizes are more than 100μm. Using spectrophotometer we get the absorption coefficient centered at 975 nm was 2.65 cm-1. The phosphorescence spectra showed that the line-widths (FWHM) at 975 and 1041 nm were about 4 and 10 nm and the lifetime of Yb ions in Sc2O3 transparent ceramics was about 883 μs. According to the absorption and fluorescence band centers of Yb:Sc2O3 transparent ceramics, the level scheme of Yb3+ ions in Sc2O3 ceramics could be gotten.
基金Project supported bythe National Natural Science Foundation of China (50372075)
文摘YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. The mixed powder compact was sintered at 1760 ℃ for 6 h in vacuum and annealed at 1500 ℃ for 10 h in an air atmosphere. The ceramics consisted of about 10μm grains and exhibited a pore-free structure. The optical transmittance of the ceramics at 1064 nm was nearly 80%. Upconversion emissions were investigated on the ceramics pumped by a 980 nm continuous wave diode laser, and strong green emission centered at 523 and 559 nm and red emission centered at 669 nm were observed, which originated from the radiative transitions of ^2H11/2→^4I15/2, ^4S3/2→^4I15/2, and ^4F9/2→^4I15/2 of Er^3+ ions, respectively.
基金Study on Optical Properties and Structure of Transparent Ceramics,Chinese Education Ministry Excellent Teachers Project (KB200226)
文摘Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.
基金Project supported by the National Natural Science Foundation of China of China(51902144)the Natural Science Foundation of Jiangsu Province(CN)(BK20191003)。
文摘Oxygen-assisted high temperature solid-state reaction approach was employed for the fabrication of Pr activated Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramic phosphor.Retiveld refinement of X-ray diffraction pattern was carried out to reveal the lattice parameters and crystal structural information.Under the blue-light excitation ofλ=473 nm,the phosphor exhibits a sharp intense red emission centered at645 nm,accompanied by several other weak peaks.PL evolution with temperature shows a significant luminescence quenching behavior,and the underlying multi-phonon interaction with optical center is revealed by proposing an unprecedent theoretical calculation work.Such a phonon effect is further confirmed from the red-shift of peak position with temperature,and the involved phonon energy of50.7 meV is determined from Raman scattering measurement.More interestingly,the fitted results of transient-state PL spectra show a fluctuation of luminescence lifetime at various temperatures,further indicating a significant effect of phonon vibration in the system.