Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number rang...Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.展开更多
The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In part...The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.展开更多
In this paper,we investigate a one-dimensional Euler-Poisson sys-tem with varying background charges,which are two different constants when the flow speed is less than and greater than the sound speed.Using the shock ...In this paper,we investigate a one-dimensional Euler-Poisson sys-tem with varying background charges,which are two different constants when the flow speed is less than and greater than the sound speed.Using the shock matching method,we derive the properties of the solution trajectories and es-tablish a monotonic relationship between the density at the nozzle exit and the shock position.This relationship demonstrates the existence and uniqueness of a transonic shock solution under suitable boundary conditions.展开更多
文摘Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.
基金supported by the State Scholarship Fund of the China Scholarship Council (Grant 2009629129)
文摘The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
文摘In this paper,we investigate a one-dimensional Euler-Poisson sys-tem with varying background charges,which are two different constants when the flow speed is less than and greater than the sound speed.Using the shock matching method,we derive the properties of the solution trajectories and es-tablish a monotonic relationship between the density at the nozzle exit and the shock position.This relationship demonstrates the existence and uniqueness of a transonic shock solution under suitable boundary conditions.