The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includ...2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.展开更多
A 30Gbit/s receptor module is developed with a CMOS integrated receiver chip(IC) and a GaAs-based 1 × 12 photo detector array of PIN-type. Parallel technology is adopted in this module to realize a high-speed r...A 30Gbit/s receptor module is developed with a CMOS integrated receiver chip(IC) and a GaAs-based 1 × 12 photo detector array of PIN-type. Parallel technology is adopted in this module to realize a high-speed receiver module with medium speed devices. A high-speed printed circuit board(PCB) is designed and produced. The IC chip and the PD array are packaged on the PCB by chip-on-board technology. Flip chip alignment is used for the PD array accurately assembled on the module so that a plug-type optical port is built. Test results show that the module can receive parallel signals at 30Gbit/s. The sensitivity of the module is - 13.6dBm for 10^-13 BER.展开更多
Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive ...Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.展开更多
In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to...In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.展开更多
As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the k...As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
This paper presents an innovative switched-mode auto gain control (AGC) circuit with internally created reset module for DC-10Mb/s burst-mode unbalanced (BMU) optical data transmission. Conventional AGC circuit is...This paper presents an innovative switched-mode auto gain control (AGC) circuit with internally created reset module for DC-10Mb/s burst-mode unbalanced (BMU) optical data transmission. Conventional AGC circuit is inappropriate for BMU data transmission because it is based on average level detection and requires considerable time to settle on a predefined gain. Therefore, we adopt a fast switched-mode AGC based on peak level detection. After the gain is adjusted, the peak level detectors need to re-detect the peak level of the input signal. Thus, we develop an internally created reset module. This AGC with reset module exhibits a fast operation and achieves an adjusted stable gain within one-bit, avoiding any bit loss up to 10Mb/s data rate. During power-up, the peak level detectors possibly hold an uncertain level resulting in the bit-errors. We propose a power-up reset circuit to solve this problem. Designed in a 0.5μm CMOS technology, the circuit achieves an optical sensitivity of better than -30dBm and a wide dynamic range of over 30dB with a power dissipation of only 30 mW from a 5V supply.展开更多
All digital implementation of receiver is a main topic on digital communication recently. The design of interpolation filter is one of the important problems for all digital implementation of receiver. In this paper, ...All digital implementation of receiver is a main topic on digital communication recently. The design of interpolation filter is one of the important problems for all digital implementation of receiver. In this paper, for full response linear modulation signal, a interpolation criterion is proposed. An interpolation formula is presented on bandwidth-limited transmission signal. For example, using the raised cosine roll off function as the system pulse response, the feasibility and effectiveness on the interpolation formula are certified by theoretical and numerical analysis. The computer simulation result on 16-QAM signal is given.展开更多
Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter applic...Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter application is presented in this paper. Two TI-EF-DSMs are compared,one is a conventional directly implemented and the other is the improved. The processing speed of the proposed two-channel improved time-interleaved error feedback delta sigma modulator( ITI-EF-DSM) is higher than the conventional directly implemented TI-EF-DSM for shortened critical path. A digital transmitter based on the ITI-EF-DSM is implemented on field progrmmable gate array( FPGA). The long term evolution( LTE) signals with different bandwidths of 5 MHz,10 MHz and 20 MHz are used as the signal source to evaluate the transmitter. The achieved SNR is 41 dB for the 20 MHz LTE signal with the processing clock of only 184 MHz.展开更多
A new digital transmitter based on delta sigma modulator( DSM) with bus-splitting is presented in this paper. The second order low pass error-feedback delta sigma modulator( EF-DSM) is focused. The signal to noise rat...A new digital transmitter based on delta sigma modulator( DSM) with bus-splitting is presented in this paper. The second order low pass error-feedback delta sigma modulator( EF-DSM) is focused. The signal to noise ratio( SNR) of the EF-DSM is derived for different bus-splitting bits.Following the EF-DSM,a multi-bit digital up mixer is used for carrier frequency transform. In order to validate the theory of bus-splitting,two types of transmitters are implemented on FPGA for comparison,in which one is with non-bus-splitting and the other is with bus-splitting. The FPGA implemented transmitter with bus-splitting promotes the maximum operation speed by 39%,and reduces hardware consumptions more than 16%. Both single tone and orthogonal frequency division multiplexing( OFDM) signal source are used to evaluate the proposed transmitter.展开更多
Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform fo...Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems.Combining a coarse wavelength-division multiplexing(CWDM)devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators,we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time.The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel(i.e.,an aggregated date rate of 400 Gb/s).展开更多
A novel technique based on sub-wavelength plasma structure effects on enhancement of RF communication signals on a receiving antenna is carried out in this paper in laboratory experiments and analyzed by corresponding...A novel technique based on sub-wavelength plasma structure effects on enhancement of RF communication signals on a receiving antenna is carried out in this paper in laboratory experiments and analyzed by corresponding numerical simulations.Considerable intensification on receiving signal gain up to -10 d B in comparison with that without the plasma modulation is observed experimentally in -1 GHz RF band,with an effective enhancement bandwidth of -340 MHz and the fractional bandwidth of -34%.Then,the optimal modulation parameters of plasma are further studied by a numerical simulation.It is shown that the number density,the layer thickness,and the collision frequency of the plasma,as well as the relative distance between the plasma layer and antenna synergistically affect the modulation.Compared to the metallic antenna with the same overall dimension,the modulated antenna covered by the subwavelength plasma structure features higher receiving efficiency and lower radar cross section in the studied RF band.The mechanism of the reception enhancement is further revealed by analyzing characteristics of electromagnetic scattering and electric field distribution in the subwavelength plasma layer.The results then exhibit scientific significance and application potential of sub-wavelength plasma modulation on compact receiving antennas with higher performance and better feature of radar stealth.展开更多
We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and rec...We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and receiver.However,information theoretic studies suggested use of more than one sample per symbol at the channel and receiver for achieving higher performance.In this article,a soft-information aided iterative receiver is derived,which uses off-the-shelf blocks for detection and demodulation by keeping the complexity of the receiver acceptable.We consider here two samples per symbols at the channel and receiver in a pragmatic paradigm.It is shown that phase noise estimation can be significantly improved at the expense of modest processing overhead.Simulation results are presented for low-density parity check coded quadrature amplitude modulations.Our results show a significant performance improvement for strong phase noise values compared to classical receiver approaches.展开更多
In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output ar...In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output are balanced by introducing a differential oscillator with input signal controlled biasing,which acts as both a carrier generator and an OOK modulator.Then,power consumption of the transmitter is reduced by the OOK modulated signal via switching the oscillator and the power amplifier at the same time.Furthermore,the area size is also reduced by a class-AB power amplifier,which uses the PCB antenna as the resonance inductance.With these features,the total chip area is reduced to 670μm×740μm(In a 0.18μm CMOS process).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2001AA312010).
文摘2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.
文摘A 30Gbit/s receptor module is developed with a CMOS integrated receiver chip(IC) and a GaAs-based 1 × 12 photo detector array of PIN-type. Parallel technology is adopted in this module to realize a high-speed receiver module with medium speed devices. A high-speed printed circuit board(PCB) is designed and produced. The IC chip and the PD array are packaged on the PCB by chip-on-board technology. Flip chip alignment is used for the PD array accurately assembled on the module so that a plug-type optical port is built. Test results show that the module can receive parallel signals at 30Gbit/s. The sensitivity of the module is - 13.6dBm for 10^-13 BER.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB2904500in part by the National Natural Science Foundation of China under Grant 62471183in part by the Fundamental Research Funds for the Central Universities under Grant 2024ZYGXZR076.
文摘Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.
基金supported in part by National Natural Science Foundation of China under Grant 62461024Jiangxi Provincial Natural Science Foundation of China under Grant 20224ACB202001.
文摘In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.
基金supported by the National Natural Science Foundation of China under Grant No.51574198Nanchong City 2018 Special Fund for City-School Cooperation under Grant No.18SXHZ0021
文摘As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
基金Supported by the Natural Science Foundation of Jiangsu Province ( BK2010411 ) and the National International Cooperation Project of China-Korea (2011DFA11310).
文摘This paper presents an innovative switched-mode auto gain control (AGC) circuit with internally created reset module for DC-10Mb/s burst-mode unbalanced (BMU) optical data transmission. Conventional AGC circuit is inappropriate for BMU data transmission because it is based on average level detection and requires considerable time to settle on a predefined gain. Therefore, we adopt a fast switched-mode AGC based on peak level detection. After the gain is adjusted, the peak level detectors need to re-detect the peak level of the input signal. Thus, we develop an internally created reset module. This AGC with reset module exhibits a fast operation and achieves an adjusted stable gain within one-bit, avoiding any bit loss up to 10Mb/s data rate. During power-up, the peak level detectors possibly hold an uncertain level resulting in the bit-errors. We propose a power-up reset circuit to solve this problem. Designed in a 0.5μm CMOS technology, the circuit achieves an optical sensitivity of better than -30dBm and a wide dynamic range of over 30dB with a power dissipation of only 30 mW from a 5V supply.
文摘All digital implementation of receiver is a main topic on digital communication recently. The design of interpolation filter is one of the important problems for all digital implementation of receiver. In this paper, for full response linear modulation signal, a interpolation criterion is proposed. An interpolation formula is presented on bandwidth-limited transmission signal. For example, using the raised cosine roll off function as the system pulse response, the feasibility and effectiveness on the interpolation formula are certified by theoretical and numerical analysis. The computer simulation result on 16-QAM signal is given.
基金Supported by the National Natural Science Foundation of China(No.61674037)the National Key Research and Development Program of China(No.2016YFC0800400)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)the State Grid Nanjing Power Supply Company Project(No.1701052)
文摘Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter application is presented in this paper. Two TI-EF-DSMs are compared,one is a conventional directly implemented and the other is the improved. The processing speed of the proposed two-channel improved time-interleaved error feedback delta sigma modulator( ITI-EF-DSM) is higher than the conventional directly implemented TI-EF-DSM for shortened critical path. A digital transmitter based on the ITI-EF-DSM is implemented on field progrmmable gate array( FPGA). The long term evolution( LTE) signals with different bandwidths of 5 MHz,10 MHz and 20 MHz are used as the signal source to evaluate the transmitter. The achieved SNR is 41 dB for the 20 MHz LTE signal with the processing clock of only 184 MHz.
基金Supported by the National Natural Science Foundation of China(No.61674037)National Key Research and Development Program of China(No.2016YFC0800400)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)
文摘A new digital transmitter based on delta sigma modulator( DSM) with bus-splitting is presented in this paper. The second order low pass error-feedback delta sigma modulator( EF-DSM) is focused. The signal to noise ratio( SNR) of the EF-DSM is derived for different bus-splitting bits.Following the EF-DSM,a multi-bit digital up mixer is used for carrier frequency transform. In order to validate the theory of bus-splitting,two types of transmitters are implemented on FPGA for comparison,in which one is with non-bus-splitting and the other is with bus-splitting. The FPGA implemented transmitter with bus-splitting promotes the maximum operation speed by 39%,and reduces hardware consumptions more than 16%. Both single tone and orthogonal frequency division multiplexing( OFDM) signal source are used to evaluate the proposed transmitter.
基金This work is supported partially by the National Major Research and Development Program(2019YFB1803902)National Natural Science Foundation of China(NSFC)(62135012,62105107)+3 种基金Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2021R01001)Guangdong Basic and Applied Basic Research Foundation(2021A 1515012215,2021B1515120057)Science and Technology Planning Project of Guangdong Province(2019A050510039)Fundamental Research Funds for the Central Universities(2021QNA5001).
文摘Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects.Thin-film lithium niobate(TFLN)photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems.Combining a coarse wavelength-division multiplexing(CWDM)devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators,we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time.The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel(i.e.,an aggregated date rate of 400 Gb/s).
基金supported by National Natural Science Foundation of China(Nos.51577044 and 11605035)
文摘A novel technique based on sub-wavelength plasma structure effects on enhancement of RF communication signals on a receiving antenna is carried out in this paper in laboratory experiments and analyzed by corresponding numerical simulations.Considerable intensification on receiving signal gain up to -10 d B in comparison with that without the plasma modulation is observed experimentally in -1 GHz RF band,with an effective enhancement bandwidth of -340 MHz and the fractional bandwidth of -34%.Then,the optimal modulation parameters of plasma are further studied by a numerical simulation.It is shown that the number density,the layer thickness,and the collision frequency of the plasma,as well as the relative distance between the plasma layer and antenna synergistically affect the modulation.Compared to the metallic antenna with the same overall dimension,the modulated antenna covered by the subwavelength plasma structure features higher receiving efficiency and lower radar cross section in the studied RF band.The mechanism of the reception enhancement is further revealed by analyzing characteristics of electromagnetic scattering and electric field distribution in the subwavelength plasma layer.The results then exhibit scientific significance and application potential of sub-wavelength plasma modulation on compact receiving antennas with higher performance and better feature of radar stealth.
文摘We consider an iterative phase synchronization scheme based on maximum a posteriori probability algorithm.In classical approaches,the phase noise estimation model considers one sample per symbol at the channel and receiver.However,information theoretic studies suggested use of more than one sample per symbol at the channel and receiver for achieving higher performance.In this article,a soft-information aided iterative receiver is derived,which uses off-the-shelf blocks for detection and demodulation by keeping the complexity of the receiver acceptable.We consider here two samples per symbols at the channel and receiver in a pragmatic paradigm.It is shown that phase noise estimation can be significantly improved at the expense of modest processing overhead.Simulation results are presented for low-density parity check coded quadrature amplitude modulations.Our results show a significant performance improvement for strong phase noise values compared to classical receiver approaches.
基金Supported by the National Natural Science Foundation of China(No.61072010)
文摘In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output are balanced by introducing a differential oscillator with input signal controlled biasing,which acts as both a carrier generator and an OOK modulator.Then,power consumption of the transmitter is reduced by the OOK modulated signal via switching the oscillator and the power amplifier at the same time.Furthermore,the area size is also reduced by a class-AB power amplifier,which uses the PCB antenna as the resonance inductance.With these features,the total chip area is reduced to 670μm×740μm(In a 0.18μm CMOS process).