期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design of(GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation 被引量:5
1
作者 Huan-huan Wang Wen-xiu Liu +4 位作者 Jing Ma Qian Liang Wen Qin Patrick Osei Lartey Xiao-jiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期830-839,共10页
(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel t... (GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel technique,and its transmission characteristics for photocatalysis were tested.The results show that the lattice constant,filling ratio,number of periodic layers,and incident angle had effects on the band gap.When the lattice constant,filling ratio,number of periodic layers,and incident angle were set to 125 nm,0.45,21,and 0°,respectively,a gap width of 53 nm appeared at the central wavelength(322 nm).The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap.A slow photon effect region above 96%reflectivity appeared.The degradation rate of tetracycline in(GO/TiO2)N photonic crystal was enhanced to 64%within 60 min.Meanwhile,the degradation efficiency of(GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder. 展开更多
关键词 one-dimensional photonic crystal translight software transmission characteristics photocatalytic performance slow photon effect
在线阅读 下载PDF
Angle-dependent discoloration structures in wing scales of Morpho menelaus butterfly 被引量:6
2
作者 NIU ShiChao LI Bo +4 位作者 YE JunFeng MU ZhengZhi ZHANG JunQiu LIU Yan HAN ZhiWu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期749-755,共7页
The Morpho butterfly is famous for its typical structural color and has increasingly attracted the interest of scholars in a wide variety of research fields. Herein, it was found that the color of Morpho menelaus butt... The Morpho butterfly is famous for its typical structural color and has increasingly attracted the interest of scholars in a wide variety of research fields. Herein, it was found that the color of Morpho menelaus butterfly wings is not only structure-based but also viewing-angle-dependent. Firstly, the discoloration effect of this typical butterfly was confirmed by a series of experiments. Then, the general form, arrangements, and geometrical dimensions of the scales were observed using a stereomicroscope. Scanning electron microscopy was also used to examine the two-dimensional morphologies and structures of a single scale. Afterwards, one model with the optimized three-dimensional profile of the structure was described using Pro-engineer software. The associate model was then analyzed to reconstruct the process between the incident light and the model surface. Finally, the mechanism of the angle-dependent discoloration effect was analyzed by theoretical calculation and optical simulation. Different light propagation paths and the length of the incident light at different angles caused destructive or constructive interference between the light reflected from the different layers. The different spectra of the reflected light make the wings appear with different structural colors, thereby endowing the angle-dependent discoloration effect. The consistency of the calculation and simulation results confirms that these structures possess an excellent angle-dependent discoloration effect. This functional "biomimetic structure" would not only be of great scientific interest but could also have a great impact in a wide range of applications such as reflective displays, credit card security, and military stealth technology. 展开更多
关键词 angle-dependent DISCOLORATION structural color BUTTERFLY wing scales BIONICS translight
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部