期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Elucidating the Limit of Lithium Difuorophosphate Electrolyte Additive for High-Voltage Li/Mn-Rich Layered Oxide Ⅱ Graphite Li Ion Batteries
1
作者 Anindityo Arifadi Feleke Demelash +6 位作者 Tobias Brake Christian Lechtenfeld Sven Klein Lennart Alsheimer Simon Wiemers-Meyer Martin Winter Johannes Kasnatscheew 《Energy & Environmental Materials》 2025年第2期76-84,共9页
Li/Mn-rich layered oxide(LMR)cathode active materials offer remarkably high specific discharge capacity(>250 mAh g^(-1))from both cationic and anionic redox.The latter necessitates harsh charging conditions to high... Li/Mn-rich layered oxide(LMR)cathode active materials offer remarkably high specific discharge capacity(>250 mAh g^(-1))from both cationic and anionic redox.The latter necessitates harsh charging conditions to high cathode potentials(>4.5 V vs Li|Li^(+)),which is accompanied by lattice oxygen release,phase transformation,voltage fade,and transition metal(TM)dissolution.In cells with graphite anode,TM dissolution is particularly detrimental as it initiates electrode crosstalk.Lithium difluorophosphate(LiDFP)is known for its pivotal role in suppressing electrode crosstalk through TM scavenging.In LMR‖graphite cells charged to an upper cutoff voltage(UCV)of 4.5 V,effective TM scavenging effects of LiDFP are observed.In contrast,for an UCV of 4.7 V,the scavenging effects are limited due to more severe TM dissolution compared an UCV of 4.5V.Given the saturation in solubility of the TM scavenging agents,which are LiDFP decomposition products,e.g.,PO_(4)^(3-) and PO_(3)F^(2-),higher concentrations of the LiDFP as precursor"cannot enhance the amount of scavenging species,they rather start to precipitate and damage the anode. 展开更多
关键词 crosstalk electrolyteadditive full-cell HIGH-VOLTAGE Li/Mn-richlayeredoxide lithium difluorophosphate transitionmetaldissolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部