Two-dimensional transition metal dichalcogenides(TMDs) have attracted extensive attention due to their many novel properties.The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds,...Two-dimensional transition metal dichalcogenides(TMDs) have attracted extensive attention due to their many novel properties.The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds,while van der Waals interactions combine the layers together.This makes its lattice dynamics layer-number dependent.The evolutions of ultralow frequency(〈 50 cm^(-1)) modes,such as shear and layer-breathing modes have been well-established.Here,we review the layer-number dependent high-frequency(〉 50 cm^(-1)) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes,known as Davydov splitting.Such Davydov splitting can be well described by a van der Waals model,which directly links the splitting with the interlayer coupling.Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials.展开更多
Ternary two-dimentional(2D)materials exhibit diverse physical properties depending on their composition,structure,and thickness.Through forming heterostructures with other binary materials that show similar structure,...Ternary two-dimentional(2D)materials exhibit diverse physical properties depending on their composition,structure,and thickness.Through forming heterostructures with other binary materials that show similar structure,there can be numerous potential applications of these ternary 2D materials.In this work,we reported the structure of few-layer CrPS_(4)by X-ray diffraction,transmission electron microscope,and electron-density distribution calculation.We also demonstrated a new application of the CrPS_(4)/MoS_(2)heterobilayer:visible-infrared photodetectors with type-II staggered band alignment at room temperature.The response of the heterostructure to infrared light results from a strong interlayer coupling that reduces the energy interval in the junction area.Since the intrinsic bandgap of individual components determines wavelengths,the decrease in energy interval allows better detection of light that has a longer wavelength.We used photoluminescence(PL)spectroscopy,Kelvin probe force microscopy(KPFM)under illumination,and electrical transport measurements to verify the photoinduced charge separation between the CrPS_(4)/MoS_(2)heterostructures.At forward bias,the device functioned as a highly sensitive photodetector,as the wavelength-dependent photocurrent measurement achieved the observation of optical excitation from 532 to 1,450 nm wavelength.Moreover,the photocurrent caused by interlayer exciton reached around 1.2 nA at 1,095 nm wavelength.Our demonstration of the strong interlayer coupling in the CrPS_(4)/MoS_(2)heterostructure may further the understanding of the essential physics behind binary-ternary transition metal chalcogenides heterostructure and pave a way for their potential applications in visible-infrared devices.展开更多
基金Project supported by the National Basic Research Program of China(No.2016YFA0301200)the National Natural Science Foundation of China(Nos.11225421,11474277,11434010,61474067,11604326,11574305 and 51527901)the National Young 1000 Talent Plan of China
文摘Two-dimensional transition metal dichalcogenides(TMDs) have attracted extensive attention due to their many novel properties.The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds,while van der Waals interactions combine the layers together.This makes its lattice dynamics layer-number dependent.The evolutions of ultralow frequency(〈 50 cm^(-1)) modes,such as shear and layer-breathing modes have been well-established.Here,we review the layer-number dependent high-frequency(〉 50 cm^(-1)) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes,known as Davydov splitting.Such Davydov splitting can be well described by a van der Waals model,which directly links the splitting with the interlayer coupling.Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials.
基金the National Natural Science Foundation of China(No.NSFC 51972006).
文摘Ternary two-dimentional(2D)materials exhibit diverse physical properties depending on their composition,structure,and thickness.Through forming heterostructures with other binary materials that show similar structure,there can be numerous potential applications of these ternary 2D materials.In this work,we reported the structure of few-layer CrPS_(4)by X-ray diffraction,transmission electron microscope,and electron-density distribution calculation.We also demonstrated a new application of the CrPS_(4)/MoS_(2)heterobilayer:visible-infrared photodetectors with type-II staggered band alignment at room temperature.The response of the heterostructure to infrared light results from a strong interlayer coupling that reduces the energy interval in the junction area.Since the intrinsic bandgap of individual components determines wavelengths,the decrease in energy interval allows better detection of light that has a longer wavelength.We used photoluminescence(PL)spectroscopy,Kelvin probe force microscopy(KPFM)under illumination,and electrical transport measurements to verify the photoinduced charge separation between the CrPS_(4)/MoS_(2)heterostructures.At forward bias,the device functioned as a highly sensitive photodetector,as the wavelength-dependent photocurrent measurement achieved the observation of optical excitation from 532 to 1,450 nm wavelength.Moreover,the photocurrent caused by interlayer exciton reached around 1.2 nA at 1,095 nm wavelength.Our demonstration of the strong interlayer coupling in the CrPS_(4)/MoS_(2)heterostructure may further the understanding of the essential physics behind binary-ternary transition metal chalcogenides heterostructure and pave a way for their potential applications in visible-infrared devices.