The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the...The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.展开更多
Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simp...Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.展开更多
By revisiting the three stage theory for the progress of science proposed by Taketani in 1942, the footmarks of fluidization research are examined. The bubbling and fast fluidization issues were emphasized so that the...By revisiting the three stage theory for the progress of science proposed by Taketani in 1942, the footmarks of fluidization research are examined. The bubbling and fast fluidization issues were emphasized so that the future offluidization research can be discussed among scientists and engineers in a wider perspective. The first cycle of fluidization research was started in the early 1940s by an initial stage of phenomenology. The second stage of structural studies was kicked off in the early 1950s with the introduction of the two phase theory. The third stage of essential studies occurred in the early 1960s in the form of bubble hydrodynamics. The second cycle, which confirmed the aforementioned three stages closed at the turn of the century, established a general understanding of suspension structures including agglomerating fluidization, bubbling, turbulent and fast fluidizations and pneumatic transport; also established powerful measurement and numerical simulation tools.After a general remark on science, technology and society issues the interactions between fluidization technology and science are revisited. Our future directions are discussed including the tasks in the third cycle, particularly in its phenomenology stage where strong motivation and intention are always necessary, in relation also to the green reforming of the present technology. A generalized definition of 'fluidization' is proposed to extend fluidization principle into much wider scientific fields, which would be effective also for wider collaborations.展开更多
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to tur...In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.展开更多
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pr...This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30μm; particle density 2300 kg/m^3; loose- poured bulk density 700 kg/m^3) and white powder (median particle diameter 55 p.m; particle density 1600 kg/m^3 ; loose-poured bulk density 620 kg/m^3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the prod- ucts along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s), This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctua- tion and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.展开更多
The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics t...The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics tests reveal the existence of three transition velocities, especially at low gas velocities. Four distinct fluidization regimes, namely, the compacted bed, agitated bed and coalesced and discrete bubble regimes were detected. A comparison of reconstructed attractors of pressure fluctuations measured at different axial positions along the riser and with various solid loadings showed significant differences in the signals compared before fluidization, especially at minimum liquid agitation velocity. Close to the minimum liquid fluidization velocity and high liquid velocities, the variation in particle size has an insignificant effect on the bed hydrodynamics. Therefore, S statistics is a reliable method to demar- cate different fluidization regimes and to characterize the influence of various operating conditions on the hydrodynamics of gas-liquid-solid fluidized beds. The method is applicable in large-scale industrial installations to detect dynamic changes within a bed, such as regime transitions or agglomeration.展开更多
Bubble-induced three-phase inverse fluidized bed(BIFB)has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency.To extend the applicatio...Bubble-induced three-phase inverse fluidized bed(BIFB)has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency.To extend the application in high-salinity wastewater treatment,a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems,including flow regimes,fluidization transition gas velocities,bed expansion ratio,and average phase holdups.The flow regime changes in NaCl solution system are generally consistent with those in the pure water system.The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases,with a minimum value observed at approximately 1 wt%NaCl solution.The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration.These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.展开更多
基金supported by the National Key Research Plan (2019YFE0102100)the Huaneng Group Science and Technology Research Project (HNKj20-H50)the C9 University Science and Technology Project (201903D421009).
文摘The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.
基金Supports from the Iran National Science Foundation(INSF) in lran(No.91001766)
文摘Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.
文摘By revisiting the three stage theory for the progress of science proposed by Taketani in 1942, the footmarks of fluidization research are examined. The bubbling and fast fluidization issues were emphasized so that the future offluidization research can be discussed among scientists and engineers in a wider perspective. The first cycle of fluidization research was started in the early 1940s by an initial stage of phenomenology. The second stage of structural studies was kicked off in the early 1950s with the introduction of the two phase theory. The third stage of essential studies occurred in the early 1960s in the form of bubble hydrodynamics. The second cycle, which confirmed the aforementioned three stages closed at the turn of the century, established a general understanding of suspension structures including agglomerating fluidization, bubbling, turbulent and fast fluidizations and pneumatic transport; also established powerful measurement and numerical simulation tools.After a general remark on science, technology and society issues the interactions between fluidization technology and science are revisited. Our future directions are discussed including the tasks in the third cycle, particularly in its phenomenology stage where strong motivation and intention are always necessary, in relation also to the green reforming of the present technology. A generalized definition of 'fluidization' is proposed to extend fluidization principle into much wider scientific fields, which would be effective also for wider collaborations.
基金the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA07030100)the Technology Planning Project of Jiangxi Province(No.20122BBG70087)financial contributions from the Chongqing Science and Technology Commission(No.2011AC4068)
文摘In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.
文摘This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30μm; particle density 2300 kg/m^3; loose- poured bulk density 700 kg/m^3) and white powder (median particle diameter 55 p.m; particle density 1600 kg/m^3 ; loose-poured bulk density 620 kg/m^3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the prod- ucts along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s), This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctua- tion and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.
文摘The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics tests reveal the existence of three transition velocities, especially at low gas velocities. Four distinct fluidization regimes, namely, the compacted bed, agitated bed and coalesced and discrete bubble regimes were detected. A comparison of reconstructed attractors of pressure fluctuations measured at different axial positions along the riser and with various solid loadings showed significant differences in the signals compared before fluidization, especially at minimum liquid agitation velocity. Close to the minimum liquid fluidization velocity and high liquid velocities, the variation in particle size has an insignificant effect on the bed hydrodynamics. Therefore, S statistics is a reliable method to demar- cate different fluidization regimes and to characterize the influence of various operating conditions on the hydrodynamics of gas-liquid-solid fluidized beds. The method is applicable in large-scale industrial installations to detect dynamic changes within a bed, such as regime transitions or agglomeration.
基金The authors are grateful to the Ningbo Yongjiang Talent Introduction Programme-innovative Talent(grant No.2023A136G)the National Natural Science Foundation of China(grant No.22408270)for financial support.
文摘Bubble-induced three-phase inverse fluidized bed(BIFB)has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency.To extend the application in high-salinity wastewater treatment,a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems,including flow regimes,fluidization transition gas velocities,bed expansion ratio,and average phase holdups.The flow regime changes in NaCl solution system are generally consistent with those in the pure water system.The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases,with a minimum value observed at approximately 1 wt%NaCl solution.The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration.These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.