期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Flow Behavior of Clay-Silt to Sand-Silt Water-Rich Suspensions at Low to High Shear Rates: Implications for Slurries, Transitional Flows, and Submarine Debris-Flows 被引量:2
1
作者 Pierdomenico DEL GAUDIO Guido VENTURA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2395-2404,共10页
Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimen... Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimental rheological measurements of water-rich(40 to 60 wt%) clay to silt(population A) and silt to sand(population B) suspensions mixed in different proportions. The data evidence a shear rate dependent shear thinning-shear thickening transition. At lower shear rates, the suspensions organize in chains of particles, whereas at higher shear rates, these chains disrupt so increasing the viscosity. The viscosity, consistency and yield stress decrease as the A+B fraction decreases as the content of B particles increases. This behavior reflects the competing effects of the lubrication and frictional processes as a function of particle size and water content. Transitional flows form by the incorporation of small amounts of the finer fraction while ‘oceanic floods’ form at the estuary of rivers and the submarine debris-flows increase their velocity by incorporating water. The critical Reynolds number of the studied suspensions is ~2000±100 suggesting that the grainsize plays a major role in the laminar to turbulent transition. Our results have implications for the modeling of sediment flows and the hazard related to floods. 展开更多
关键词 rheology water-sediment suspensions slurry sludge transitional flows and mud flows volcanogenic sediment-water flows oceanic floods
在线阅读 下载PDF
Transitional Flow and Heat Transfer Characteristics in a Rectangular Duct with Stagger-arrayed Short Pin Fins 被引量:1
2
作者 饶宇 万超一 臧述升 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期237-242,共6页
This article describes an experimental study on friction and heat transfer performances of a transitional airflow in a rectangular channel with stagger-arrayed short pin fins. Friction factors, average Nusselt numbers... This article describes an experimental study on friction and heat transfer performances of a transitional airflow in a rectangular channel with stagger-arrayed short pin fins. Friction factors, average Nusselt numbers and overall thermal performances of the transitional flow are obtained. The experimental study has showed that the pin fins enhance the heat transfer performance sig- nificantly, however increasing the flow frictional resistance considerably. After comparing the experimental results with the p... 展开更多
关键词 COOLING transitional flow friction factor convective heat transfer
原文传递
Boiling Dynamics and Entropy Generation in Inclined Tubular Systems:Analysis and Optimization
3
作者 Hao Tang Jianchang Yang +2 位作者 Yunxin Zhou Jianxin Xu Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第7期1571-1600,共30页
This research explores the characteristics of boiling in inclined pipes,a domain of great importance in engineering.Employing an experimental visualization technique,the boiling dynamics of deionizedwater are examined... This research explores the characteristics of boiling in inclined pipes,a domain of great importance in engineering.Employing an experimental visualization technique,the boiling dynamics of deionizedwater are examined at varying inclination angles,paying special attention to the emerging flow patterns.The findings demonstrate that the inclination angle significantly impacts flow pattern transitions within the 0°to 90°range.As the heat flux rises,bubbles form in the liquid.The liquid’s inertia extends the bubble-wall contact time,thereby delaying the onset of bulk bubble flow.Beyond a 90°inclination,however,the patterning behavior is more influenced by the fluid velocity.At low speeds,incomplete pipe filling results in a large liquid plug hindering flow,while high speeds lead to full pipe filling.In general,gravity,inertia,buoyancy forces,and capillary forces are themain influential factors in the considered problem.However,an analysis of the heat transfer coefficient and boiling curve for different inclination angles reveals that the observed variations are essentially due to corresponding changes in the flow pattern.Finally,an optimal mass flux and inclination angle,able to minimize total entropy generation and improve heat transfer efficiency,are determined by means of an entropy generation analysis. 展开更多
关键词 Flow boiling inclination angle entropy generation flow pattern transition
在线阅读 下载PDF
Experimental and modeling investigation of zero net liquid flow in hilly terrain pipeline
4
作者 Bo Huang Qiang Xu +4 位作者 Ying-Jie Chang Ye-Qi Cao Hai-Yang Yu Yu-Wen Li Lie-Jin Guo 《Petroleum Science》 2025年第5期2183-2202,共20页
Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and acc... Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data. 展开更多
关键词 Hilly terrain pipeline Zero net liquid flow Slug flow Flow pattern transition Quantitative image processing
原文传递
Conjugate heat transfer investigations of turbine vane based on transition models 被引量:6
5
作者 Zhang Hongjun Zou Zhengping +2 位作者 Li Yu Ye Jian Song Songhe 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期890-897,共8页
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a ... The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved. 展开更多
关键词 AGS and c-Re h transition models Conjugate heat transfer Flow and heat transfer char- acteristics Temperature prediction accuracy transition flow
原文传递
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:3
6
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition Porous media Pressure gradient Flow velocity Surfactant concentration Foam quality
原文传递
Accurately predicting hypersonic transitional flow on cone via a symmetry approach 被引量:1
7
作者 Weitao BI Kexin ZHENG +1 位作者 Zhou WEI Zhensu SHE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期337-347,共11页
A new algebraic transition model is proposed based on a Structural Ensemble Dynamics(SED)theory of wall turbulence,for accurately predicting the hypersonic flow heat transfer on cone.The model defines the eddy viscosi... A new algebraic transition model is proposed based on a Structural Ensemble Dynamics(SED)theory of wall turbulence,for accurately predicting the hypersonic flow heat transfer on cone.The model defines the eddy viscosity in terms of a two-dimensional multi-regime distribution of a Stress Length(SL)function,and hence is named as SED-SL.This paper presents clear evidence of precise predictions of transition onset location and peak heat flux of a wide range of hypersonic Transitional Boundary Layers(TrBL)around straight cone at zero incidence,to an unprecedented accuracy as validated by over 70 measurements for varying five crucial influential factors(Mach number,temperature ratio,cone half angle,nose Reynolds number and noise level).The results demonstrate the universality of the postulated multi-regime similarity structure,in characterizing not only the spatial non-uniform distribution of the eddy viscosity in hypersonic TrBL on cone,but also the dependence of the transition onset location on the five influential factors.The latter yields a novel correlation formula for transition center Reynolds number which takes similar functional form as the SL function within the symmetry approach.It is concluded that the SED-SL model simulates TrBL around cone with uniformly high accuracy,and then points out to an optimistic alternative way to construct hypersonic transition model. 展开更多
关键词 CONES Heat flux Hypersonic boundary layers transition flow Turbulence models
原文传递
INVESTIGATION OF DOMINANT FREQUENCIES IN TRANSITION REYNOLDS NUMBER RANGE OF FLOW AROUND A CIRCULAR CYLINDER PARTⅡ: THEORETICAL DETERMINATION OF THE RELATIONSHIP BETWEEN VORTEX SHEDDING AND TRANSITION FREQUENCIES AT DIFFERENT REYNOLDS NUMBERS 被引量:1
8
作者 AHMED N A 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期317-321,共5页
An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate v... An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved. 展开更多
关键词 Vortex shedding transition Separated flow Shear layer Frequency Power spectral density
在线阅读 下载PDF
Transition and self-sustained turbulence in dilute suspensions of finite-size particles 被引量:1
9
作者 I.Lashgari F.Picano L.Brandt 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期121-125,共5页
We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 167... We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 1675, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e., Re ≈1775. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic, Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow. 展开更多
关键词 Flow transition Suspension Finite-size particles Lift-up effect
在线阅读 下载PDF
Progress of the unified wave-particle methods for non-equilibrium flows from continuum to rarefied regimes
10
作者 Sha Liu Kun Xu Chengwen Zhong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第6期1-25,I0001,共26页
The predictions of the multiple-regime flows from continuum regime to free molecular regime are crucial for the aerodynamic design in a large number of engineering applications,such as the near-space craft,the ultra-l... The predictions of the multiple-regime flows from continuum regime to free molecular regime are crucial for the aerodynamic design in a large number of engineering applications,such as the near-space craft,the ultra-low orbit spacecraft and the micro-electro-mechanical systems(MEMS).Since the essence of this multiple-regime problem is a complex system composed by different scales and mechanics,the modeling and numerical prediction of these multiple-regime flows are very challenging at both theoretical and practical levels.Moreover,the single flow field with multiple flow regimes will make the problem extremly complicated.Unfortunately,this typical flow field is very common in hypersonic application and important for the development of multiple-regime aerodynamics.On the other hand,both the constructions of the low density wind tunnel with high enthalpy and the high altitude flight experiment are also very challenging at the present stage.Therefore,the researches on the multiple-regime flows and the corresponding complex science hit a worldwide bottleneck.This paper reviews the breakthroughs in the computational methods for multiple-regime flows in the last ten years,which can be used as numerical experimental tools for studying the multiple-scale flow mechanism and providing data for aerodynamic designs and thermal protections.This paper focuses on the progress of the unified wave-particle methods established in recent years,which are proved to be both accurate and efficient for multiple-regime flows with extremly high speed. 展开更多
关键词 Direct modeling Multiple flow regimes Multiple scales Hypersonic flow transitional flow Complex science
原文传递
Physics-based model for boundary layer transition prediction in a wide speed range
11
作者 Zaijie LIU Yuhan LU +2 位作者 Sheng WANG Qiang WANG Chao YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期143-159,共17页
A new physics-based model employing three transport equations is developed for the simulation of boundary layer transitions in a wide speed range. The laminar kinetic energy is used to represent pretransitional stream... A new physics-based model employing three transport equations is developed for the simulation of boundary layer transitions in a wide speed range. The laminar kinetic energy is used to represent pretransitional streamwise velocity fluctuations, taking account of different instability modes. The fluctuation velocity components normal to the streamwise direction are modeled by another transport equation. Transition is triggered automatically with the development of the pretransitional velocity fluctuations. In the fully turbulent region, the model reverts to the k-ω turbulence model. Different test cases, including subsonic, supersonic and hypersonic flows around flat plates, airfoils and straight cones, are numerically simulated to validate the performance of the model. The results demonstrate the excellent predictive capabilities of the model in different paths of transition. The model can serve as a basis for the extension of additional transition mechanisms,such as rotation and curvature effects, roughness-induced transition and crossflow-induced transition. 展开更多
关键词 Boundary layer HIGH-SPEED Physics-based transition model transitional flow
原文传递
Effect of anisotropic resistance characteristic on boundary-layer transitional flow
12
作者 Zheng HONG Zhengyin YE +1 位作者 Kangling WU Kun YE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1935-1950,共16页
It is observed that the feather surface exhibits anisotropic resistances for the streamwise and spanwise flows.To obtain a qualitative understanding about the effect of this anisotropic resistance feature of surface o... It is observed that the feather surface exhibits anisotropic resistances for the streamwise and spanwise flows.To obtain a qualitative understanding about the effect of this anisotropic resistance feature of surface on the boundary-layer transitional flow over a flat plate,a simple phenomenological model for the anisotropic resistance is established in this paper.By means of the large eddy simulation(LES)with high-order accurate finite difference method,the numerical investigations are conducted.The numerical results show that with the spanwise resistance hindering the formation of vortexes,the transition from laminar flow to turbulent flow can be delayed,and turbulence is weakened when the flow becomes fully turbulent,which leads to significant drag reduction for the plate.On the contrary,the streamwise resistance renders the flow less stable,which leads to the earlier transition and enhances turbulence in the turbulent region,causing a drag increase for the plate.Thus,it is indicated that a surface with large resistance for spanwise flow and small resistance for streamwise flow can achieve significant drag reduction.The present results highlight the anisotropic resistance characteristic near the feather surface for drag reduction,and shed a light on the study of bird’s efficient flight. 展开更多
关键词 anisotropic resistance transitional flow drag reduction numerical simulation
在线阅读 下载PDF
Flow transitions in model Czochralski GaAs melt
13
作者 陈淑仙 《Journal of Chongqing University》 CAS 2006年第2期63-70,共8页
The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then ... The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the, transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results, The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality, 展开更多
关键词 Flow transitions thermal wave baroclinic instability GaAs melt
在线阅读 下载PDF
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
14
作者 Yong Zhao Tianlin Wang Zhi Zong 《Journal of Marine Science and Application》 2014年第4期388-393,共6页
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d... As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior. 展开更多
关键词 transitional boundary layer flow Reynolds averaged numerical simulation (RANS) turbulence models low Reynolds correction Reynolds stress eddy viscosity
在线阅读 下载PDF
Calculation of terminal velocity in transitional flow for spherical particle
15
作者 Zhang Lei Honaker Ricky +2 位作者 Liu Wenli Men Dongpo Chen Jinxiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期311-317,共7页
The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d... The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity. 展开更多
关键词 transitional flow Drag coefficient Terminal velocity Spherical particle Calculation
在线阅读 下载PDF
Study on the Organization Model of Wagon Flows in Railway Terminal
16
作者 严余松 朱松年 《Journal of Modern Transportation》 2000年第1期33-39,共7页
Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organ... Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented. 展开更多
关键词 railway terminal organization of wagon flows transit wagon flows local wagon flows local train
在线阅读 下载PDF
Direct and noisy transitions in a model shear flow
17
作者 Marina Pausch Bruno Eckhardt 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期111-116,共6页
The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude. "Optimal" perturbations are distinguished as extrema of certain functionals, and differe... The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude. "Optimal" perturbations are distinguished as extrema of certain functionals, and different functionals give different optima. We here discuss the phase space structure of a 2D simplified model of the transition to turbulence and discuss optimal perturbations with respect to three criteria: energy of the initial condition, energy dissipation of the initial condition, and amplitude of noise in a stochastic transition. We find that the states triggering the transition are different in the three cases, but show the same scaling with Reynolds number. 展开更多
关键词 transition to turbulence Shear flows Noise driven Optimal initial conditions
在线阅读 下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
18
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger Flow pattern transition Falling film flow
原文传递
Two-Dimensional Numerical Analysis of Multi-Caliber Drainage Pipe Impact Mechanism with Barrier on the Transition Process of Convective System
19
作者 Guoxin Jiang Junli Guo +4 位作者 Xin Zhang Chunyi Zhuang Zelong Ma Chuan Zhao Shengjun Huang 《Journal of Applied Mathematics and Physics》 2025年第7期2245-2259,共15页
The water carrying capacity and head loss of pipelines are significantly affected by the flow state,aiming at the problem that the transition flow characteristics of multi caliber basalt fiber drainage pipe are not cl... The water carrying capacity and head loss of pipelines are significantly affected by the flow state,aiming at the problem that the transition flow characteristics of multi caliber basalt fiber drainage pipe are not clear,based on the two-di-mensional numerical simulation results of multi-diameter pipes with barriers,this paper systematically analyzes the transition path and transition mecha-nism of the multi-diameter drainage pipe convection system under the action of barriers in the range of Re=10^(3)-2.73×10^(8).The results show that:1)The main mode solution of multi-aperture basalt fiber drainage pipe convection system is steady flow in the process of transition to chaos.2)Compared with the non-barrier condition,the transition process of the multi-aperture basalt fiber drainage pipe with the barrier is obviously delayed,that is,the critical Reynolds number of the convective system evolving from laminar flow to tur-bulent flow is larger.The research results show that the design of the barrier can effectively improve the water conveyance capacity of the pipeline,which can provide reference for the optimal design of multi-diameter drainage pipes. 展开更多
关键词 Basalt Fiber Drainage Pipe transitional Flow Flow Restrictor Reynolds Number
在线阅读 下载PDF
Application of Coolant Diffusion Equation in Numerical Simulation of Flow in Air-cooled Turbines 被引量:1
20
作者 王强 颜培刚 +2 位作者 董平 冯国泰 王仲奇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期243-249,共7页
The investigation is intended to verify a coupled solver developed for turbines to illustrate how transition exerts effects on the predicted thermal loads. The solver couples the N-S solver named HIT-3D, with a therma... The investigation is intended to verify a coupled solver developed for turbines to illustrate how transition exerts effects on the predicted thermal loads. The solver couples the N-S solver named HIT-3D, with a thermal conduction module using the finite difference method. Three operating conditions of the NASA-MarkII vane are selected to be the cases for tests. The models used in the simulations include Baldwin-Lomax (B-L) algebraic model, q-ω low-Re model and B-L & Abu-Ghannam and Shaw (AGS) model. The pre... 展开更多
关键词 turbines heat transfer turbulence model transition flow boundary layer flow
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部