In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train...In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.展开更多
As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.Ho...As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.展开更多
An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ...An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ×12.5μm InP SHBT without de-embedding reaches 178GHz. It is critical in high-speed low power applications,such as OEIC receivers and analog-to-digital converters.展开更多
An emitter self-aligned InP-based single heterojunction bipolar transistor with a cutoff frequency (fT) of 162GHz is reported. The emitter size is 0.8μm × 12μm, the maximum DC gain is 120, the offset voltage ...An emitter self-aligned InP-based single heterojunction bipolar transistor with a cutoff frequency (fT) of 162GHz is reported. The emitter size is 0.8μm × 12μm, the maximum DC gain is 120, the offset voltage is 0.10V,and the typical breakdown voltage at Ic = 0. 1μA is 3.8V. This device is suitable for high-speed low-power applications,such as OEIC receivers and analog-to-digital converters.展开更多
The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are chang...The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.展开更多
The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect ene...The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.展开更多
Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heteroju...Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.展开更多
A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common ...A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.展开更多
A physical model for scaling and optimizing InGaAs/InP double heterojunction bipolar transistors(DHBTs) based on hydrodynamic simulation is developed.The model is based on the hydrodynamic equation,which can accurat...A physical model for scaling and optimizing InGaAs/InP double heterojunction bipolar transistors(DHBTs) based on hydrodynamic simulation is developed.The model is based on the hydrodynamic equation,which can accurately describe non-equilibrium conditions such as quasi-ballistic transport in the thin base and the velocity overshoot effect in the depleted collector.In addition,the model accounts for several physical effects such as bandgap narrowing,variable effective mass,and doping-dependent mobility at high fields.Good agreement between the measured and simulated values of cutoff frequency,f t,and maximum oscillation frequency,f max,are achieved for lateral and vertical device scalings.It is shown that the model in this paper is appropriate for downscaling and designing InGaAs/InP DHBTs.展开更多
The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D...InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.展开更多
This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased mod...This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased modulation doping efficiency and carrier confinement.Moreover,the direct current(DC)and radio frequency(RF)characteristics and their reliability between the single channel structure and the composite channel structure after 75-ke V proton irradiation are compared in detail.The results show that the composite channel structure has excellent radiation tolerance.Mechanism analysis demonstrates that the composite channel structure weakens the carrier removal effect.This phenomenon can account for the increase of native carrier and the decrease of defect capture rate.展开更多
Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly c...Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly correlates with the bias configuration during irradiation. It is found that the high body doping concentration can make the devices less sensitive to the single transistor latchup effect, and the onset drain voltage at which latchup occurs can degrade as the total dose level rises. The mechanism of band-to-band tunneling (BBT) has been discussed. Two-dimensional simulations were conducted to evaluate the BBT effect. It is demonstrated that BBT combined with the positive trapped charge in the buried oxide (BOX) contributes a lot to the latchup effect.展开更多
This letter presents the fabrication of InP double heterojunction bipolar transistors(DHBTs)on a 3-inch flexible substrate with various thickness values of the benzocyclobutene(BCB)adhesive bonding layer,the correspon...This letter presents the fabrication of InP double heterojunction bipolar transistors(DHBTs)on a 3-inch flexible substrate with various thickness values of the benzocyclobutene(BCB)adhesive bonding layer,the corresponding thermal resistance of the InP DHBT on flexible substrate is also measured and calculated.InP DHBT on a flexible substrate with 100 nm BCB obtains cut-off frequency f_(T)=358 GHz and maximum oscillation frequency f_(MAX)=530 GHz.Moreover,the frequency performance of the InP DHBT on flexible substrates at different bending radii are compared.It is shown that the bending strain has little effect on the frequency characteristics(less than 8.5%),and these bending tests prove that InP DHBT has feasible flexibility.展开更多
针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应...针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应的小信号等效电路模型与高频等效噪声电路模型.首先引入栅极–漏极之间的互感元件来模拟器件在高频下由于电磁相互作用产生的寄生耦合效应,并采用电磁仿真与直接参数提取相结合的建模方法,建立小信号等效电路模型.然后以所建小信号模型为基础,通过相关噪声矩阵与噪声参数的提取方法,建立高频等效噪声电路模型.实验结果表明,在500 MHz~50 GHz频段内,S参数最大误差小于3%,四噪声参数相较于传统模型提升约2.45%,并从小信号电流增益(|h21|)、单边功率增益(U)与最小噪声系数(Fmin)出发,评估了寄生耦合效应对高频性能的影响.展开更多
We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are ext...We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are extracted by means of 3D EM simulation.The simulations with a new excitation scheme are closer to the actual on-wafer measurement conditions.Appropriate simulation settings are calibrated by comparing measurement and simulation of OPEN and SHORT structures.A simplerπ-type topology is proposed for the intrinsic model,in which the base-collector resistance Rμ,output resistance Rce are deleted,and a capacitance Cce is introduced to characterize the capacitive parasitic caused by the collector finger and emitter ground bar.The intrinsic parameters are all extracted by exact equations that are derived from rigorous mathematics.The method is characterized by its ease of implementation and the explicit physical meaning of extraction procedure.Experimental validations are performed at four biases for three InGaAs/InP HBT devices with 0.8×7μm,0.8×10μm and 0.8×15μm emitter,and quite good fitting results are obtained in the range of 0.1-50 GHz.展开更多
基金Supported by the National Natural Science Foundation of China(62201293,62034003)the Open-Foundation of State Key Laboratory of Millimeter-Waves(K202313)the Jiangsu Province Youth Science and Technology Talent Support Project(JSTJ-2024-040)。
文摘In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT),South Korea(RS-2024-00421181)financially supported in part by National R&D Program(2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by Ministry of Science and ICT+2 种基金the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL25021-210)The Inter-University Semiconductor Research Center,Institute of Engineering Research,and Soft Foundry Institute at Seoul National University provided research facilities for this workhe grant by the National Research Foundation of Korea(NSF)supported by the Korea government(MIST)(RS-2025-16903034)。
文摘As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.
文摘An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ×12.5μm InP SHBT without de-embedding reaches 178GHz. It is critical in high-speed low power applications,such as OEIC receivers and analog-to-digital converters.
文摘An emitter self-aligned InP-based single heterojunction bipolar transistor with a cutoff frequency (fT) of 162GHz is reported. The emitter size is 0.8μm × 12μm, the maximum DC gain is 120, the offset voltage is 0.10V,and the typical breakdown voltage at Ic = 0. 1μA is 3.8V. This device is suitable for high-speed low-power applications,such as OEIC receivers and analog-to-digital converters.
基金Project supported by the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61435012)
文摘The samples of InxGa(1-x)As/In(0.52)Al(0.48)As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm^2/V·s(300 K)and42040 cm^2/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10^12/cm^2 and 2.502×10^12/cm^2,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Development Fund for Outstanding Young Teachers in Zhengzhou University of China(Grant No.1521317004)the Doctoral Student Overseas Study Program of Zhengzhou University,China
文摘The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501091)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.ZYGX2014J003 and ZYGX2013J020)
文摘Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.
基金Supported by the National Basic Research Program of China under Grant No 2011CB301900the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BY2013077
文摘A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB327502)
文摘A physical model for scaling and optimizing InGaAs/InP double heterojunction bipolar transistors(DHBTs) based on hydrodynamic simulation is developed.The model is based on the hydrodynamic equation,which can accurately describe non-equilibrium conditions such as quasi-ballistic transport in the thin base and the velocity overshoot effect in the depleted collector.In addition,the model accounts for several physical effects such as bandgap narrowing,variable effective mass,and doping-dependent mobility at high fields.Good agreement between the measured and simulated values of cutoff frequency,f t,and maximum oscillation frequency,f max,are achieved for lateral and vertical device scalings.It is shown that the model in this paper is appropriate for downscaling and designing InGaAs/InP DHBTs.
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
基金Project(Z132012A001)supported by the Technical Basis Research Program in Science and Industry Bureau of ChinaProject(61201028,60876009)supported by the National Natural Science Foundation of China
文摘InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.
基金the National Natural Science Foundation of China(Grant No.11775191)the Natural Science Foundation of Henan Province,China(Grant No.202300410379)+2 种基金the Promotion Funding for Excellent Young Backbone Teacher of Henan Province,China(Grant No.2019GGJS017)Key Technologies Research and Development Program of Henan Province,China(Grant No.202102210321)the Promotion Project for Physics Discipline in Zhengzhou University,China(Grant No.2018WLTJ01)。
文摘This paper proposes a reasonable radiation-resistant composite channel structure for In P HEMTs.The simulation results show that the composite channel structure has excellent electrical properties due to increased modulation doping efficiency and carrier confinement.Moreover,the direct current(DC)and radio frequency(RF)characteristics and their reliability between the single channel structure and the composite channel structure after 75-ke V proton irradiation are compared in detail.The results show that the composite channel structure has excellent radiation tolerance.Mechanism analysis demonstrates that the composite channel structure weakens the carrier removal effect.This phenomenon can account for the increase of native carrier and the decrease of defect capture rate.
基金Project supported by Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1447100)
文摘Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly correlates with the bias configuration during irradiation. It is found that the high body doping concentration can make the devices less sensitive to the single transistor latchup effect, and the onset drain voltage at which latchup occurs can degrade as the total dose level rises. The mechanism of band-to-band tunneling (BBT) has been discussed. Two-dimensional simulations were conducted to evaluate the BBT effect. It is demonstrated that BBT combined with the positive trapped charge in the buried oxide (BOX) contributes a lot to the latchup effect.
基金National Natural Science Foundation of China under Grants 61875241.
文摘This letter presents the fabrication of InP double heterojunction bipolar transistors(DHBTs)on a 3-inch flexible substrate with various thickness values of the benzocyclobutene(BCB)adhesive bonding layer,the corresponding thermal resistance of the InP DHBT on flexible substrate is also measured and calculated.InP DHBT on a flexible substrate with 100 nm BCB obtains cut-off frequency f_(T)=358 GHz and maximum oscillation frequency f_(MAX)=530 GHz.Moreover,the frequency performance of the InP DHBT on flexible substrates at different bending radii are compared.It is shown that the bending strain has little effect on the frequency characteristics(less than 8.5%),and these bending tests prove that InP DHBT has feasible flexibility.
文摘针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应的小信号等效电路模型与高频等效噪声电路模型.首先引入栅极–漏极之间的互感元件来模拟器件在高频下由于电磁相互作用产生的寄生耦合效应,并采用电磁仿真与直接参数提取相结合的建模方法,建立小信号等效电路模型.然后以所建小信号模型为基础,通过相关噪声矩阵与噪声参数的提取方法,建立高频等效噪声电路模型.实验结果表明,在500 MHz~50 GHz频段内,S参数最大误差小于3%,四噪声参数相较于传统模型提升约2.45%,并从小信号电流增益(|h21|)、单边功率增益(U)与最小噪声系数(Fmin)出发,评估了寄生耦合效应对高频性能的影响.
文摘We present a convenient and practical electromagnetic(EM)assisted small-signal model extraction method for InP double-heterojunction bipolar transistors(DHBTs).Parasitic parameters of pad and electrode fingers are extracted by means of 3D EM simulation.The simulations with a new excitation scheme are closer to the actual on-wafer measurement conditions.Appropriate simulation settings are calibrated by comparing measurement and simulation of OPEN and SHORT structures.A simplerπ-type topology is proposed for the intrinsic model,in which the base-collector resistance Rμ,output resistance Rce are deleted,and a capacitance Cce is introduced to characterize the capacitive parasitic caused by the collector finger and emitter ground bar.The intrinsic parameters are all extracted by exact equations that are derived from rigorous mathematics.The method is characterized by its ease of implementation and the explicit physical meaning of extraction procedure.Experimental validations are performed at four biases for three InGaAs/InP HBT devices with 0.8×7μm,0.8×10μm and 0.8×15μm emitter,and quite good fitting results are obtained in the range of 0.1-50 GHz.