The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement....The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.展开更多
We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from whic...We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.展开更多
Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived usin...Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.展开更多
The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates, and the transverse deformation of the plate on which a concentrated for...The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates, and the transverse deformation of the plate on which a concentrated force is acted is calculated using the principle of virtual work.By solving Lagrange's equation, the frequencies and model loss factors of free vibration of the plate are obtained, then the transient response of constrained damping of laminated cantilever plate is obtained, when the concentrated force is withdrawn suddenly.The theoretical calculations are compared with the experimental data, the results show:both the frequencies and the response time of theoretical calculation and its variational law with the parameters of the damping layer are identical with experimental results.Also, the response time of steel cantilever plate, unconstrained damping cantilever plate and constrained damping cantilever plate are brought into comparison, which shows that the constrained damping structure can effectively suppress the vibration.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51905219,No.52272368)the Postdoctoral Science Foundation of China(Grant No.2023M731444)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001)the Key Research and Development Program of Zhenjiang City(No.GY2021001)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20210103).
文摘The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.
基金supported by the Program for New Century Excellent Talents in Universities(No.NCET-12-0625)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.SBK2014010134)+2 种基金the Fundamental Research Funds for Central Universities(No.NE2013101)the National Natural Science Foundation of China(No.11232007)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.
基金Project supported by the National Natural Science Foundation of China (No. 10572150)the Natural Science Foundation of Naval University of Engineering (No. HGDQNJJ008)
文摘Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.
基金supported by the National Natural Science Foundation of China (No.10572150)
文摘The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates, and the transverse deformation of the plate on which a concentrated force is acted is calculated using the principle of virtual work.By solving Lagrange's equation, the frequencies and model loss factors of free vibration of the plate are obtained, then the transient response of constrained damping of laminated cantilever plate is obtained, when the concentrated force is withdrawn suddenly.The theoretical calculations are compared with the experimental data, the results show:both the frequencies and the response time of theoretical calculation and its variational law with the parameters of the damping layer are identical with experimental results.Also, the response time of steel cantilever plate, unconstrained damping cantilever plate and constrained damping cantilever plate are brought into comparison, which shows that the constrained damping structure can effectively suppress the vibration.