To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted w...To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted while considering the influence of original defects on columns.The dynamic stability of the columns under periodic transient loadings is analyzed theoretically.Through the study of different deflections,the dynamic instability of the columns is obtained by Maple software.The results of theoretical analysis show that the larger the original defects,the greater the unstable area,the stable solution amplitude of columns and the risk of instability caused by parametric resonance will be.The damping of columns is a vital factor in reducing dynamic instability at the same original defects.On the basis of the Mathieu-Hill equation,the relationship between the original defects and deflection is deduced,and the dynamic instability region of the columns under different original defects is obtained.Therefore,reducing the original defects of columns can further enhance the dynamic stability of the compressed columns in practical engineering.展开更多
The dynamic stress intensity factor for a semi-infinite crack in an otherwise unbounded elastic body is analyzed The crack is subjected to a pair of suddenly applied point loads on its faces at a distance l away from ...The dynamic stress intensity factor for a semi-infinite crack in an otherwise unbounded elastic body is analyzed The crack is subjected to a pair of suddenly applied point loads on its faces at a distance l away from the crack tip The solution of the problem is obtained by superposition of the solutions of two simpler problems. The first of these problems is Lamb' s problem, while the second problem considers a half space with its surface subjected to the negative of the normal displacement induced by Lamb's problem in the range x>0. The latter is solved by means of integral transforms together with the application of Weiner-Hopf technique and Cagniard-de Hoop method. An exact expression is derived for the mode I stress intensity factor as a function of time for any point along the crack edge. Some features of the solution are discussed.展开更多
An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of t...An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.展开更多
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance ...The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading, this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.展开更多
Aiming at the complex electromagnetic transient process of EMU passing by phase-separation with electric load in high-speed railway, mechanism of overvoltage caused by switching off, overvoltage caused by switching on...Aiming at the complex electromagnetic transient process of EMU passing by phase-separation with electric load in high-speed railway, mechanism of overvoltage caused by switching off, overvoltage caused by switching on and impact current is analyzed systematically in this article. π-type equivalent circuit of feeding section is put forward in the analysis of overvoltage mechanism. Overvoltage and overcurrent model of passing by phase-separation with electric load are also built. Correctness of mechanism was validated by simulation. In addition, the methods to solve the influence on substations, transformers and protection devices in this process are put forward, which provides a new idea on passing by phase-separation with electric load technology.展开更多
含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文...含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。展开更多
The propagation of stress waves in a large-diameter pipe pile for low strain dynamic testing cannot be explained properly by traditional 1D wave theories. A new computational model is established to obtain a wave equa...The propagation of stress waves in a large-diameter pipe pile for low strain dynamic testing cannot be explained properly by traditional 1D wave theories. A new computational model is established to obtain a wave equation that can describe the dynamic response of a large-diameter thin-walled pipe pile to a transient point load during a low strain integrity test. An analytical solution in the time domain is deduced using the separation of variables and variation of constant methods. The validity of this new solution is verifi ed by an existing analytical solution under free boundary conditions. The results of this time domain solution are also compared with the results of a frequency domain solution and fi eld test data. The comparisons indicate that the new solution agrees well with the results of previous solutions. Parametric studies using the new solution with reference to a case study are also carried out. The results show that the mode number affects the accuracy of the dynamic response. A mode number greater than 10 is required to enable the calculated dynamic responses to be independent of the mode number. The dynamic response is also greatly affected by soil properties. The larger the side resistance, the smaller the displacement response and the smaller the refl ected velocity wave crest. The displacement increases as the stress waves propagate along the pile when the pile shaft is free. The incident waves of displacement and velocity responses of the pile are not the same among different points in the circumferential direction on the pile top. However, the arrival time and peak value of the pile tip refl ected waves are almost the same among different points on the pile top.展开更多
基金The National Natural Science Foundation of Chin(No.51078354)
文摘To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted while considering the influence of original defects on columns.The dynamic stability of the columns under periodic transient loadings is analyzed theoretically.Through the study of different deflections,the dynamic instability of the columns is obtained by Maple software.The results of theoretical analysis show that the larger the original defects,the greater the unstable area,the stable solution amplitude of columns and the risk of instability caused by parametric resonance will be.The damping of columns is a vital factor in reducing dynamic instability at the same original defects.On the basis of the Mathieu-Hill equation,the relationship between the original defects and deflection is deduced,and the dynamic instability region of the columns under different original defects is obtained.Therefore,reducing the original defects of columns can further enhance the dynamic stability of the compressed columns in practical engineering.
文摘The dynamic stress intensity factor for a semi-infinite crack in an otherwise unbounded elastic body is analyzed The crack is subjected to a pair of suddenly applied point loads on its faces at a distance l away from the crack tip The solution of the problem is obtained by superposition of the solutions of two simpler problems. The first of these problems is Lamb' s problem, while the second problem considers a half space with its surface subjected to the negative of the normal displacement induced by Lamb's problem in the range x>0. The latter is solved by means of integral transforms together with the application of Weiner-Hopf technique and Cagniard-de Hoop method. An exact expression is derived for the mode I stress intensity factor as a function of time for any point along the crack edge. Some features of the solution are discussed.
文摘An experimental study is performed to investigate the temperature response and distribution in a sector tilted pad thrust bearing during the transient periods such as the load on the bearing changed abruptly.Lots of thermocouples are placed on different position such as the pad surface,leading and trailing edge as well as the pad block,and then these thermocouples are used to measure the temperature variation during the transient period.The load on one pad and the displacement of the runner are measured with different sensors.The effects of a sudden load change on temperature at different position of the pads are analyzed according to the experimental data.The influence of different initial conditions and the different load increment on temperature variation at the pad surface and pad body are obtained,and temperature responses at leading edge and trailing edge under different conditions are tested.This experimental study shows a significant effect of load increment and initial condition on the temperature distribution of bearing pad interface under sudden load change conditions,and the measurement of real oil film temperature is difficult due to the large thermal inertia of pad surface.
基金Project supported by the National Natural Science Foundation of China.
文摘The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading, this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
文摘Aiming at the complex electromagnetic transient process of EMU passing by phase-separation with electric load in high-speed railway, mechanism of overvoltage caused by switching off, overvoltage caused by switching on and impact current is analyzed systematically in this article. π-type equivalent circuit of feeding section is put forward in the analysis of overvoltage mechanism. Overvoltage and overcurrent model of passing by phase-separation with electric load are also built. Correctness of mechanism was validated by simulation. In addition, the methods to solve the influence on substations, transformers and protection devices in this process are put forward, which provides a new idea on passing by phase-separation with electric load technology.
文摘含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。
基金The 111 Project under Grant No.B13024the National Natural Science Foundation of China under Grant No.51378177+1 种基金the Program for New Century Excellent Talents in University under Grant No.NCET-12-0843the Fundamental Research Funds for the Central Universities under Grant No.106112014CDJZR200007
文摘The propagation of stress waves in a large-diameter pipe pile for low strain dynamic testing cannot be explained properly by traditional 1D wave theories. A new computational model is established to obtain a wave equation that can describe the dynamic response of a large-diameter thin-walled pipe pile to a transient point load during a low strain integrity test. An analytical solution in the time domain is deduced using the separation of variables and variation of constant methods. The validity of this new solution is verifi ed by an existing analytical solution under free boundary conditions. The results of this time domain solution are also compared with the results of a frequency domain solution and fi eld test data. The comparisons indicate that the new solution agrees well with the results of previous solutions. Parametric studies using the new solution with reference to a case study are also carried out. The results show that the mode number affects the accuracy of the dynamic response. A mode number greater than 10 is required to enable the calculated dynamic responses to be independent of the mode number. The dynamic response is also greatly affected by soil properties. The larger the side resistance, the smaller the displacement response and the smaller the refl ected velocity wave crest. The displacement increases as the stress waves propagate along the pile when the pile shaft is free. The incident waves of displacement and velocity responses of the pile are not the same among different points in the circumferential direction on the pile top. However, the arrival time and peak value of the pile tip refl ected waves are almost the same among different points on the pile top.