Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin...Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
The transient performance and optimization of a passive residual heat removal heat exchanger(PRHR HX)were investigated.First,a calculation method was developed for predicting the heat transfer of the PRHR HX.The calcu...The transient performance and optimization of a passive residual heat removal heat exchanger(PRHR HX)were investigated.First,a calculation method was developed for predicting the heat transfer of the PRHR HX.The calculation results were validated through comparisons with ROSA experimental data.The heat-transfer performance of the AP1000 PRHR HX in the initial period was predicted,and it satisfied the design requirements.Second,the distributions of the heat flux,tube-inside/outside heattransfer coefficients,and heat load for the AP1000 PRHR HX over 2000 s were examined.Third,an optimization study was conducted by adjusting the horizontal length and tube diameter.Their effects on the four main heat-transfer parameters and the heat-transfer area were analyzed.Furthermore,the influence of the initial in-containment refueling water storage tank(IRWST)temperature was investigated using an established simulation procedure.The results indicated that it significantly affected the trends of the IRWST temperature and reactor outlet temperature.Finally,the minimum required flow rates over time to maintain the reactor outlet temperature at the safety line were determined for different start-up times.The trends of the minimum required flow rate and the peak flow rate were analyzed.展开更多
A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to hi...A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.展开更多
Based on the thermo-electro-elastic coupling theory,the mathematical model for a surface heated piezoelectric semiconductor(PS)plate is developed in the time domain.Applying the direct and inverse Laplace transformati...Based on the thermo-electro-elastic coupling theory,the mathematical model for a surface heated piezoelectric semiconductor(PS)plate is developed in the time domain.Applying the direct and inverse Laplace transformations to the established model,the mechanical and electrical responses are investigated.The comparison between the analytical solution and the finite element method(FEM)is conducted,which illustrates the validity of the derivation.The calculated results show that the maximum values of the mechanical and electrical fields appear at the heating surface.Importantly,the perturbation carriers tend to concentrate in the zone near the heating surface under the given boundary conditions.It can also be observed that the heating induced elastic wave leads to jumps for the electric potential and perturbation carrier density at the wavefront.When the thermal relaxation time is introduced,all the field quantities become smaller because of the thermal lagging effect.Meanwhile,it can be found that the thermal relaxation time can describe the smooth variation at the jump position.Besides,for a plate with P-N junction,the effect of the interface position on the electrical response is studied.The effects of the initial carrier density on the electrical properties are discussed in detail.The conclusions in this article can be the guidance for the design of PS devices serving in thermal environment.展开更多
In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of...In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of the gas condensate reservoirs.Therefore,the Pressure Transient Analysis(PTA)is commonly used in this case to analyze the reservoir parameters.In this paper,we are going to compare the results of both PTA and RTA of three wells in gas condensate reservoirs.The comparison showed a great match between the results of the two mentioned techniques for the first time using a reference GOR of 75,000 SCF/STB.Therefore,we concluded that we could depend on RTA instead of PTA to spare the cost associated with the PTA in the gas condensate reservoirs.展开更多
Efficient transient analysis is critical in rotor dynamics.This study proposes the super-element(SE)differential-quadraturediscrete-time transfer matrix method(DQ-DT-TMM),a novel approach that eliminates the requireme...Efficient transient analysis is critical in rotor dynamics.This study proposes the super-element(SE)differential-quadraturediscrete-time transfer matrix method(DQ-DT-TMM),a novel approach that eliminates the requirement for initial componentaccelerations and effectively handles beam and solid finite element(FE)models with high-dimensional degrees of freedom(DOFs)in rotor systems.The primary methodologies of this approach include:(1)For the beam substructure FE dynamicequation,the Craig-Bampton method is employed for the order reduction of internal coordinates,followed by the differentialquadraturemethod for temporal discretization.Using SE technology,the internal accelerations are condensed into theboundary accelerations,and the transfer equation and matrix for beam SEs are derived.(2)For the solid substructureFE dynamic equation formulated in the rotating reference frame,in addition to applying the procedures used for beamsubstructures,rigid multipoint constraints are introduced to condense the boundary coordinates for hybrid modeling withlumped parameter components.The transfer equation is subsequently formulated in the inertial reference frame,enabling thederivation of the transfer matrix for solid SEs.Comparative analysis with full-order FE models in commercial softwaredemonstrates the advantages of the SE DQ-DT-TMM for linear rotor systems:(i)Accurately captures system dynamics usingonly a few primary modes.(ii)Achieves a 99.68%reduction in computational time for a beam model with 1120 elements and a99.98%reduction for a solid model with 75361 elements.(iii)Effectively recovers dynamic responses at any system node usingrecovery techniques.This research develops a computationally efficient framework for the transient analysis of large-scale rotorsystems,effectively addressing the challenges associated with high-dimensional DOF models in conventional DT-TMMs.展开更多
Catalysis,which is central to the energy and chemical industries,constitutes a dynamic process that involves multiple stages,ranging from activation and deactivation to rapid catalytic cycles.Comprehending these dynam...Catalysis,which is central to the energy and chemical industries,constitutes a dynamic process that involves multiple stages,ranging from activation and deactivation to rapid catalytic cycles.Comprehending these dynamic processes is crucial for optimizing catalytic reactions and developing innovative catalytic systems.This review centers on the integration of operando spectroscopies with transient analysis to acquire quantitative dynamic information directly from spectroscopic investigations of catalytic processes.Operando spectroscopies facilitate real-time observations of dynamic changes occurring during catalysis,while transient experiments yield insights that extend beyond steady-state kinetics by examining catalysts'responses to and recovery from dynamic conditions.This review aims to underscore the significance of integrating multiple spectroscopic techniques and transient methodologies to yield quantitative insights into catalytic processes,elucidating in real time the relationships between active structures,surface intermediates,and catalytic kinetics.展开更多
Some approaches or parameters were employed to indicate the stage of stable pitting such as the energy distribution obtained by the wavelet analysis or the Hilbert spectra, the recurrence quantitative parameters obtai...Some approaches or parameters were employed to indicate the stage of stable pitting such as the energy distribution obtained by the wavelet analysis or the Hilbert spectra, the recurrence quantitative parameters obtained from the recurrence analysis, and the noise resistance as well in the electrochemical noise analysis. The pitting current density may be a key parameter for the stable pitting estimation which determined the dissolution-diffusion sustainable dynamic balance in the pit according to the theoretical framework proposed by Li, Scully, and Frankel.While the pit stable product defined the critical transportation condition under the high pitting current density.The pitting current growth rate as well as its amplitude was adopted to indicate the stable pitting transition according to the electrochemical transient analysis during the stainless-steel pitting process, which may provide the quantitative indicator agreed with the theoretical framework.展开更多
In this work,a novel refined higher-order shear deformation plate theory is integrated with nonlocal elasticity theory for analyzing the free vibration,bending,and transient behaviors of fluid-infiltrated porous metal...In this work,a novel refined higher-order shear deformation plate theory is integrated with nonlocal elasticity theory for analyzing the free vibration,bending,and transient behaviors of fluid-infiltrated porous metal foam piezoelectric nanoplates resting on Pasternak elastic foundation with flexoelectric effects.Isogeometric analysis(IGA)and the Navier solution are applied to the problem.The innovation in the present study is that the influence of the in-plane variation of the nonlocal parameter on the free and forced vibration of the piezoelectric nanoplates is investigated for the first time.The nonlocal parameter and material characteristics are assumed to be material-dependent and vary gradually over the thickness of structures.Based on Hamilton’s principle,equations of motion are built,then the IGA approach combined with the Navier solution is used to analyze the static and dynamic response of the nanoplate.Lastly,we investigate the effects of the porosity coefficients,flexoelectric parameters,elastic stiffness,thickness,and variation of the nonlocal parameters on the mechanical behaviors of the rectangular and elliptical piezoelectric nanoplates.展开更多
In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted co...In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.展开更多
Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reser...Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reservoirs is essential for well performance evaluation and development strategy optimization.However,most analytical models for fractured vertical wells in stratified gas reservoirs focus on fully penetrated hydraulic fractures,neglecting the influence of partial penetration of hydraulic fractures.This paper presents a semi-analytical model to investigate the transient pressure behavior of vertically fractured wells in dual porosity multi-layered tight gas reservoirs.The partial penetration of hydraulic fracture,the vertical heterogeneities of layer properties,the differences between hydraulic fracture lengths in each layer and the stress sensitivity are all incorporated in the proposed model.The point-source solution,Laplace transformation,Fourier transformation,Pedrosa's transformation,perturbation technique,and the superposition principle are applied to obtain the analytical solution of transient pressure responses.The proposed model is validated against a commercial software,and the transient pressure behavior of vertically fractured wells in multi-layered tight gas reservoirs are analyzed.Based on the characteristics of the type curves,seven flow regimes can be identified,including wellbore storage,transitional flow period,reservoir linear flow period,vertical pseudo-radial flow in fracture system,inter-porosity flow period,late-time pseudo-radial flow period,and the boundary-dominated flow period.Sensitivity analyses reveal that the penetration ratio of hydraulic fracture has primary influence on early-time transient pressure behavior and production contribution,while the stress sensitivity mainly affects the late-time transient pressure behavior.Gas production at the initial stage is mainly contributed by the high-pressure/high-permeability layer,and gas backflow will occur during initial production stage for obviously unequal initial formation pressures.Finally,two field cases are conducted to illustrate the applicability of the proposed model.The model and corresponding conclusions can provide technical support for performance analysis of tight gas reservoirs.展开更多
The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the s...The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.展开更多
Most researches of the threshold pressure gradient in tight gas reservoirs are experimental and mainly focus on the transient pressure response, without paying much attention to the transient rate decline. This paper ...Most researches of the threshold pressure gradient in tight gas reservoirs are experimental and mainly focus on the transient pressure response, without paying much attention to the transient rate decline. This paper establishes a dual-porosity rate transient decline model for the horizontal well with consideration of the threshold pressure gradient, which represents the non-Darcy flow in a fracture system. The solution is obtained by employing the Laplace transform and the orthogonal transform. The bi-logarithmic type curves of the dimensionless production rate and derivative are plotted by the Stehfest numerical inversion method. Seven different flow regimes are identified and the effects of the influence factors such as the threshold pressure gradient, the elastic storativity ratio, and the cross flow coefficient are discussed. The presented research could interpret the production behavior more accurately and effectively for tight gas reservoirs.展开更多
Brake squeal is one of the main NVH (vibration harshness) challenges in the brake development of passenger cars. The conflict of goals in the development process and the late testability leads to the need of a deepe...Brake squeal is one of the main NVH (vibration harshness) challenges in the brake development of passenger cars. The conflict of goals in the development process and the late testability leads to the need of a deeper basic understanding of the squeal phenomenon and definition of design rules. On the other hand, brake squeal is still a very interesting field of research also for the universities because of its combination of different fundamentals, such as friction and stability behaviour of systems with local nonlinearities. Major nonlinearities of the brake system are the joints, especially the contact areas formed by the oscillating brake pad and the caliper. The state-of-the-art calculation method, which still is the "complex eigenvalue analysis", linearizes these joints, hence, neglecting its nonlinear influence in the stability analysis. Vehicle and bench experiments show that special driving manoeuvres like parking, where the brake pad often leaves the steady state, are likely causing brake squeal. The system in these manoeuvres sometimes behaves opposed to the linearized stability analysis, indicating a limit cycle beyond the Hopf point. Therefore, these states must be investigated more closely. This paper investigates the nonlinear influence of the pad caliper joint in a fixed brake caliper, also called abutment. Bench tests with pressure foils at the abutment of the brake caliper and mode shape analysis were done and a simple FE (finite element) model for a transient simulation is proposed. It is shown that the joint activity varies with driving manoeuvres, leading to different stability behaviours and limiting cycle amplitudes.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
基金support from the National Natural Science Foundation of China(12202042)the Fundamental Research Funds for the Central Universities(QNXM20220011,FRF-TP-22-119A1,FRF-IDRY-22-001)+2 种基金the Open Fund Project of Sinopec State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(33550000-22-ZC0613-0269)China Postdoctoral Science Foundations(2021M700391)High-end Foreign Expert Introduction Program(G2023105006L).
文摘Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
基金supported by the Shanghai Nuclear Engineering Research and Design Institute,State Power Investment Corporation
文摘The transient performance and optimization of a passive residual heat removal heat exchanger(PRHR HX)were investigated.First,a calculation method was developed for predicting the heat transfer of the PRHR HX.The calculation results were validated through comparisons with ROSA experimental data.The heat-transfer performance of the AP1000 PRHR HX in the initial period was predicted,and it satisfied the design requirements.Second,the distributions of the heat flux,tube-inside/outside heattransfer coefficients,and heat load for the AP1000 PRHR HX over 2000 s were examined.Third,an optimization study was conducted by adjusting the horizontal length and tube diameter.Their effects on the four main heat-transfer parameters and the heat-transfer area were analyzed.Furthermore,the influence of the initial in-containment refueling water storage tank(IRWST)temperature was investigated using an established simulation procedure.The results indicated that it significantly affected the trends of the IRWST temperature and reactor outlet temperature.Finally,the minimum required flow rates over time to maintain the reactor outlet temperature at the safety line were determined for different start-up times.The trends of the minimum required flow rate and the peak flow rate were analyzed.
基金the financial support received from the College of Petroleum Engineering and Geosciences at KFUPM through the project SF20006 toward the completion of this work。
文摘A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.
基金Project supported by the National Natural Science Foundation of China (Nos.12072253 and 62074125)。
文摘Based on the thermo-electro-elastic coupling theory,the mathematical model for a surface heated piezoelectric semiconductor(PS)plate is developed in the time domain.Applying the direct and inverse Laplace transformations to the established model,the mechanical and electrical responses are investigated.The comparison between the analytical solution and the finite element method(FEM)is conducted,which illustrates the validity of the derivation.The calculated results show that the maximum values of the mechanical and electrical fields appear at the heating surface.Importantly,the perturbation carriers tend to concentrate in the zone near the heating surface under the given boundary conditions.It can also be observed that the heating induced elastic wave leads to jumps for the electric potential and perturbation carrier density at the wavefront.When the thermal relaxation time is introduced,all the field quantities become smaller because of the thermal lagging effect.Meanwhile,it can be found that the thermal relaxation time can describe the smooth variation at the jump position.Besides,for a plate with P-N junction,the effect of the interface position on the electrical response is studied.The effects of the initial carrier density on the electrical properties are discussed in detail.The conclusions in this article can be the guidance for the design of PS devices serving in thermal environment.
文摘In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of the gas condensate reservoirs.Therefore,the Pressure Transient Analysis(PTA)is commonly used in this case to analyze the reservoir parameters.In this paper,we are going to compare the results of both PTA and RTA of three wells in gas condensate reservoirs.The comparison showed a great match between the results of the two mentioned techniques for the first time using a reference GOR of 75,000 SCF/STB.Therefore,we concluded that we could depend on RTA instead of PTA to spare the cost associated with the PTA in the gas condensate reservoirs.
基金supported by the National Natural Science Foundation of China(Grant/Award No.92266201).
文摘Efficient transient analysis is critical in rotor dynamics.This study proposes the super-element(SE)differential-quadraturediscrete-time transfer matrix method(DQ-DT-TMM),a novel approach that eliminates the requirement for initial componentaccelerations and effectively handles beam and solid finite element(FE)models with high-dimensional degrees of freedom(DOFs)in rotor systems.The primary methodologies of this approach include:(1)For the beam substructure FE dynamicequation,the Craig-Bampton method is employed for the order reduction of internal coordinates,followed by the differentialquadraturemethod for temporal discretization.Using SE technology,the internal accelerations are condensed into theboundary accelerations,and the transfer equation and matrix for beam SEs are derived.(2)For the solid substructureFE dynamic equation formulated in the rotating reference frame,in addition to applying the procedures used for beamsubstructures,rigid multipoint constraints are introduced to condense the boundary coordinates for hybrid modeling withlumped parameter components.The transfer equation is subsequently formulated in the inertial reference frame,enabling thederivation of the transfer matrix for solid SEs.Comparative analysis with full-order FE models in commercial softwaredemonstrates the advantages of the SE DQ-DT-TMM for linear rotor systems:(i)Accurately captures system dynamics usingonly a few primary modes.(ii)Achieves a 99.68%reduction in computational time for a beam model with 1120 elements and a99.98%reduction for a solid model with 75361 elements.(iii)Effectively recovers dynamic responses at any system node usingrecovery techniques.This research develops a computationally efficient framework for the transient analysis of large-scale rotorsystems,effectively addressing the challenges associated with high-dimensional DOF models in conventional DT-TMMs.
基金supported by the Ministry of Science and Technology of China(2023YFA1509103,2022YFA1503804)the National Natural Science Foundation of China(22102033,22272031,22472035)+1 种基金the Science&Technology Commission of Shanghai Municipality(22ZR1408000,22QA1401300)the Fundamental Research Funds for the Central Universities(20720220008)。
文摘Catalysis,which is central to the energy and chemical industries,constitutes a dynamic process that involves multiple stages,ranging from activation and deactivation to rapid catalytic cycles.Comprehending these dynamic processes is crucial for optimizing catalytic reactions and developing innovative catalytic systems.This review centers on the integration of operando spectroscopies with transient analysis to acquire quantitative dynamic information directly from spectroscopic investigations of catalytic processes.Operando spectroscopies facilitate real-time observations of dynamic changes occurring during catalysis,while transient experiments yield insights that extend beyond steady-state kinetics by examining catalysts'responses to and recovery from dynamic conditions.This review aims to underscore the significance of integrating multiple spectroscopic techniques and transient methodologies to yield quantitative insights into catalytic processes,elucidating in real time the relationships between active structures,surface intermediates,and catalytic kinetics.
基金support of the Ningxia Nature Science Foundation (2023AAC03339)
文摘Some approaches or parameters were employed to indicate the stage of stable pitting such as the energy distribution obtained by the wavelet analysis or the Hilbert spectra, the recurrence quantitative parameters obtained from the recurrence analysis, and the noise resistance as well in the electrochemical noise analysis. The pitting current density may be a key parameter for the stable pitting estimation which determined the dissolution-diffusion sustainable dynamic balance in the pit according to the theoretical framework proposed by Li, Scully, and Frankel.While the pit stable product defined the critical transportation condition under the high pitting current density.The pitting current growth rate as well as its amplitude was adopted to indicate the stable pitting transition according to the electrochemical transient analysis during the stainless-steel pitting process, which may provide the quantitative indicator agreed with the theoretical framework.
文摘In this work,a novel refined higher-order shear deformation plate theory is integrated with nonlocal elasticity theory for analyzing the free vibration,bending,and transient behaviors of fluid-infiltrated porous metal foam piezoelectric nanoplates resting on Pasternak elastic foundation with flexoelectric effects.Isogeometric analysis(IGA)and the Navier solution are applied to the problem.The innovation in the present study is that the influence of the in-plane variation of the nonlocal parameter on the free and forced vibration of the piezoelectric nanoplates is investigated for the first time.The nonlocal parameter and material characteristics are assumed to be material-dependent and vary gradually over the thickness of structures.Based on Hamilton’s principle,equations of motion are built,then the IGA approach combined with the Navier solution is used to analyze the static and dynamic response of the nanoplate.Lastly,we investigate the effects of the porosity coefficients,flexoelectric parameters,elastic stiffness,thickness,and variation of the nonlocal parameters on the mechanical behaviors of the rectangular and elliptical piezoelectric nanoplates.
文摘In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174036,52234003)the Sichuan Province Science and Technology Program(Grant No.2024NSFSC0199)the Joint Fund for Innovation and Development of Chongqing Natural Science Foundation(Grant No.2023NSCQ-LZX0184).
文摘Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reservoirs is essential for well performance evaluation and development strategy optimization.However,most analytical models for fractured vertical wells in stratified gas reservoirs focus on fully penetrated hydraulic fractures,neglecting the influence of partial penetration of hydraulic fractures.This paper presents a semi-analytical model to investigate the transient pressure behavior of vertically fractured wells in dual porosity multi-layered tight gas reservoirs.The partial penetration of hydraulic fracture,the vertical heterogeneities of layer properties,the differences between hydraulic fracture lengths in each layer and the stress sensitivity are all incorporated in the proposed model.The point-source solution,Laplace transformation,Fourier transformation,Pedrosa's transformation,perturbation technique,and the superposition principle are applied to obtain the analytical solution of transient pressure responses.The proposed model is validated against a commercial software,and the transient pressure behavior of vertically fractured wells in multi-layered tight gas reservoirs are analyzed.Based on the characteristics of the type curves,seven flow regimes can be identified,including wellbore storage,transitional flow period,reservoir linear flow period,vertical pseudo-radial flow in fracture system,inter-porosity flow period,late-time pseudo-radial flow period,and the boundary-dominated flow period.Sensitivity analyses reveal that the penetration ratio of hydraulic fracture has primary influence on early-time transient pressure behavior and production contribution,while the stress sensitivity mainly affects the late-time transient pressure behavior.Gas production at the initial stage is mainly contributed by the high-pressure/high-permeability layer,and gas backflow will occur during initial production stage for obviously unequal initial formation pressures.Finally,two field cases are conducted to illustrate the applicability of the proposed model.The model and corresponding conclusions can provide technical support for performance analysis of tight gas reservoirs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos: 50174011 10172028) the Science Tech. Research Program of Heilongjiang Provincial Education Department (Grant No: 10531032).
文摘The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.
基金Project supported by the National Key Basic Research Development Program of China(973 Program,Grant No.2014CB239205)
文摘Most researches of the threshold pressure gradient in tight gas reservoirs are experimental and mainly focus on the transient pressure response, without paying much attention to the transient rate decline. This paper establishes a dual-porosity rate transient decline model for the horizontal well with consideration of the threshold pressure gradient, which represents the non-Darcy flow in a fracture system. The solution is obtained by employing the Laplace transform and the orthogonal transform. The bi-logarithmic type curves of the dimensionless production rate and derivative are plotted by the Stehfest numerical inversion method. Seven different flow regimes are identified and the effects of the influence factors such as the threshold pressure gradient, the elastic storativity ratio, and the cross flow coefficient are discussed. The presented research could interpret the production behavior more accurately and effectively for tight gas reservoirs.
文摘Brake squeal is one of the main NVH (vibration harshness) challenges in the brake development of passenger cars. The conflict of goals in the development process and the late testability leads to the need of a deeper basic understanding of the squeal phenomenon and definition of design rules. On the other hand, brake squeal is still a very interesting field of research also for the universities because of its combination of different fundamentals, such as friction and stability behaviour of systems with local nonlinearities. Major nonlinearities of the brake system are the joints, especially the contact areas formed by the oscillating brake pad and the caliper. The state-of-the-art calculation method, which still is the "complex eigenvalue analysis", linearizes these joints, hence, neglecting its nonlinear influence in the stability analysis. Vehicle and bench experiments show that special driving manoeuvres like parking, where the brake pad often leaves the steady state, are likely causing brake squeal. The system in these manoeuvres sometimes behaves opposed to the linearized stability analysis, indicating a limit cycle beyond the Hopf point. Therefore, these states must be investigated more closely. This paper investigates the nonlinear influence of the pad caliper joint in a fixed brake caliper, also called abutment. Bench tests with pressure foils at the abutment of the brake caliper and mode shape analysis were done and a simple FE (finite element) model for a transient simulation is proposed. It is shown that the joint activity varies with driving manoeuvres, leading to different stability behaviours and limiting cycle amplitudes.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.