期刊文献+
共找到254,051篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进时间融合Transformers的中国大豆需求预测方法
1
作者 刘佳佳 秦晓婧 +5 位作者 李乾川 许世卫 赵继春 王一罡 熊露 梁晓贺 《智慧农业(中英文)》 2025年第4期187-199,共13页
[目的/意义]精准预测大豆需求对保障国家粮食安全、优化产业决策与应对国际贸易变局有着重要的现实意义,而利用时间融合Transformers(Temporal Fusion Transformers,TFT)模型开展中国大豆需求预测时,在特征交互层与注意力权重分配等方... [目的/意义]精准预测大豆需求对保障国家粮食安全、优化产业决策与应对国际贸易变局有着重要的现实意义,而利用时间融合Transformers(Temporal Fusion Transformers,TFT)模型开展中国大豆需求预测时,在特征交互层与注意力权重分配等方面仍存在一定局限。为此,亟需探索一种基于改进TFT模型的预测方法,以提升需求预测的准确性与可解释性。[方法]本研究将深度学习的TFT模型应用到中国大豆需求预测中,提出了一种基于多层动态特征交互(Multi-layer Dynamic Feature Interaction,MDFI)与自适应注意力权重优化(Adaptive Attention Weight Optimization,AAWO)改进的MA-TFT(Improved TFT Model Based on MDFI and AAWO)模型。对包含1980—2024年4652个相关指标的中国大豆需求分析数据集进行数据预处理和特征工程,设计实验将MA-TFT模型分别与自回归差分移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)、长短期记忆网络(Long Short-Term Memory,LSTM)模型及TFT模型进行预测性能对比,进行了消融实验,同时利用SHAP(SHapley Additive exPlanations)工具可解释性分析影响中国大豆需求的关键特征变量,开展了未来10年的中国大豆需求量预测。[结果和讨论]MA-TFT模型的均方误差(Mean Squared Error,MSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)分别为0.036和5.89%,决定系数R^(2)为0.91,均高于对比模型,均方根误差(Root Mean Square Error,RMSE)和MAPE分别较基准模型TFT累计降低21.84%和3.44%,表明改进TFT的MA-TFT模型能够捕捉特征间复杂关系,提升预测性能;研究利用SHAP工具可解释性分析发现,MA-TFT模型对影响中国大豆需求关键特征变量的解释稳定性较高;预计2025、2030和2034年中国大豆需求量分别达到11799万吨、11033万吨和11378万吨。[结论]基于改进TFT的MA-TFT模型方法为解决现有大豆需求预测方法精度不足、可解释性不强的实际问题提供了解决思路,也为其他农产品时间序列预测的方法优化与应用提供了参考和借鉴。 展开更多
关键词 时间融合transformers(TFT) 大豆需求预测 多层动态特征交互 自适应注意力权重优化 可解释性分析
在线阅读 下载PDF
新解码器的CNNs-Transformers融合网络及其病理图像肿瘤分割应用 被引量:1
2
作者 马丽晶 王朝立 +2 位作者 孙占全 程树群 王康 《小型微型计算机系统》 北大核心 2025年第6期1442-1449,共8页
病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然... 病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然而,目前大多数的网络更注重如何在编码器部分提取更准确的特征,而对于同等重要的解码器部分的结构设计研究则稍显不足.针对该问题,本文提出了由三类上采样模块组成的新网络,而编码器部分采用Swin Transformer和ConvNeXt作为网络的双分支并行独立结构.三类上采样模块分别是多重转置卷积采样、双线性上采样和Swin Transformer上采样,其特点是可以充分利用病理图像特征之间局部和全局的依赖关系.该网络分别在肝癌数据集和GLAS数据集上进行了验证,并与不同类型的主流网络进行了对比,性能指标皆达到比较好的结果. 展开更多
关键词 医学图像分割 深度学习 卷积神经网络 Swin Transformer
在线阅读 下载PDF
Generating Abstractive Summaries from Social Media Discussions Using Transformers
3
作者 Afrodite Papagiannopoulou Chrissanthi Angeli Mazida Ahmad 《Open Journal of Applied Sciences》 2025年第1期239-258,共20页
The rise of social media platforms has revolutionized communication, enabling the exchange of vast amounts of data through text, audio, images, and videos. These platforms have become critical for sharing opinions and... The rise of social media platforms has revolutionized communication, enabling the exchange of vast amounts of data through text, audio, images, and videos. These platforms have become critical for sharing opinions and insights, influencing daily habits, and driving business, political, and economic decisions. Text posts are particularly significant, and natural language processing (NLP) has emerged as a powerful tool for analyzing such data. While traditional NLP methods have been effective for structured media, social media content poses unique challenges due to its informal and diverse nature. This has spurred the development of new techniques tailored for processing and extracting insights from unstructured user-generated text. One key application of NLP is the summarization of user comments to manage overwhelming content volumes. Abstractive summarization has proven highly effective in generating concise, human-like summaries, offering clear overviews of key themes and sentiments. This enhances understanding and engagement while reducing cognitive effort for users. For businesses, summarization provides actionable insights into customer preferences and feedback, enabling faster trend analysis, improved responsiveness, and strategic adaptability. By distilling complex data into manageable insights, summarization plays a vital role in improving user experiences and empowering informed decision-making in a data-driven landscape. This paper proposes a new implementation framework by fine-tuning and parameterizing Transformer Large Language Models to manage and maintain linguistic and semantic components in abstractive summary generation. The system excels in transforming large volumes of data into meaningful summaries, as evidenced by its strong performance across metrics like fluency, consistency, readability, and semantic coherence. 展开更多
关键词 Abstractive Summarization transformers Social Media Summarization Transformer Language Models
在线阅读 下载PDF
Leveraging Transformers for Detection of Arabic Cyberbullying on Social Media: Hybrid Arabic Transformers
4
作者 Amjad A.Alsuwaylimi Zaid S.Alenezi 《Computers, Materials & Continua》 2025年第5期3165-3185,共21页
Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)... Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)and deep learning(DL)approaches utilizing natural language processing(NLP)methods and by proposing relevant datasets.However,most of these endeavors focused predominantly on the English language,leaving a substantial gap in addressing Arabic cyberbullying.Given the complexities of the Arabic language,transfer learning techniques and transformers present a promising approach to enhance the detection and classification of abusive content by leveraging large and pretrained models that use a large dataset.Therefore,this study proposes a hybrid model using transformers trained on extensive Arabic datasets.It then fine-tunes the hybrid model on a newly curated Arabic cyberbullying dataset collected from social media platforms,in particular Twitter.Additionally,the following two hybrid transformer models are introduced:the first combines CAmelid Morphologically-aware pretrained Bidirectional Encoder Representations from Transformers(CAMeLBERT)with Arabic Generative Pre-trained Transformer 2(AraGPT2)and the second combines Arabic BERT(AraBERT)with Cross-lingual Language Model-RoBERTa(XLM-R).Two strategies,namely,feature fusion and ensemble voting,are employed to improve the model performance accuracy.Experimental results,measured through precision,recall,F1-score,accuracy,and AreaUnder the Curve-Receiver Operating Characteristic(AUC-ROC),demonstrate that the combined CAMeLBERT and AraGPT2 models using feature fusion outperformed traditional DL models,such as Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM),as well as other independent Arabic-based transformer models. 展开更多
关键词 CYBERBULLYING transformers pre-trained models arabic cyberbullying detection deep learning
在线阅读 下载PDF
Analysis of the effects of strong stray magnetic fields generated by tokamak device on transformers assembled in electronic power converters
5
作者 Xingjian ZHAO Ge GAO +2 位作者 Li JIANG Yong YANG Hong LEI 《Plasma Science and Technology》 2025年第5期81-93,共13页
As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devic... As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devices,particularly transformers in switched-mode power supplies.Testing flyback converters with transformers under strong background magnetic fields highlights electromagnetic compatibility(EMC)issues for such switched-mode power supplies.This study utilizes finite element analysis software to simulate the electromagnetic environment of switched-mode power supply transformers and investigates the impact of variations in different magnetic field parameters on the performance of switched-mode power supplies under strong stray magnetic fields.The findings indicate that EMC issues are associated with transformer core saturation and can be alleviated through appropriate configurations of the core size,air gap,fillet radius,and installation direction.This study offers novel solutions for addressing EMC issues in high magnetic field environments. 展开更多
关键词 transformers magnetic field interference magnetic components power electronics magnetic field simulation
在线阅读 下载PDF
Improving Fashion Sentiment Detection on X through Hybrid Transformers and RNNs
6
作者 Bandar Alotaibi Aljawhara Almutarie +1 位作者 Shuaa Alotaibi Munif Alotaibi 《Computers, Materials & Continua》 2025年第9期4451-4467,共17页
X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemina... X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemination and political discourse to trend spotting and consumer engagement.X has emerged as a key space for understanding shifting brand perceptions,consumer preferences,and product-related sentiment in the fashion industry.However,the platform’s informal,dynamic,and context-dependent language poses substantial challenges for sentiment analysis,mainly when attempting to detect sarcasm,slang,and nuanced emotional tones.This study introduces a hybrid deep learning framework that integrates Transformer encoders,recurrent neural networks(i.e.,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)),and attention mechanisms to improve the accuracy of fashion-related sentiment classification.These methods were selected due to their proven strength in capturing both contextual dependencies and sequential structures,which are essential for interpreting short-form text.Our model was evaluated on a dataset of 20,000 fashion tweets.The experimental results demonstrate a classification accuracy of 92.25%,outperforming conventional models such as Logistic Regression,Linear Support Vector Machine(SVM),and even standalone LSTM by a margin of up to 8%.This improvement highlights the importance of hybrid architectures in handling noisy,informal social media data.This study’s findings offer strong implications for digital marketing and brand management,where timely sentiment detection is critical.Despite the promising results,challenges remain regarding the precise identification of negative sentiments,indicating that further work is needed to detect subtle and contextually embedded expressions. 展开更多
关键词 Sentiment analysis deep learning natural language processing transformers recurrent neural networks
在线阅读 下载PDF
Transformers for Multi-Modal Image Analysis in Healthcare
7
作者 Sameera V Mohd Sagheer Meghana K H +2 位作者 P M Ameer Muneer Parayangat Mohamed Abbas 《Computers, Materials & Continua》 2025年第9期4259-4297,共39页
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status... Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes. 展开更多
关键词 Multi-modal image analysis medical imaging deep learning image segmentation disease detection multi-modal fusion Vision transformers(ViTs) precision medicine clinical decision support
在线阅读 下载PDF
Token Masked Pose Transformers Are Efficient Learners
8
作者 Xinyi Song Haixiang Zhang Shaohua Li 《Computers, Materials & Continua》 2025年第5期2735-2750,共16页
In recent years,Transformer has achieved remarkable results in the field of computer vision,with its built-in attention layers effectively modeling global dependencies in images by transforming image features into tok... In recent years,Transformer has achieved remarkable results in the field of computer vision,with its built-in attention layers effectively modeling global dependencies in images by transforming image features into token forms.However,Transformers often face high computational costs when processing large-scale image data,which limits their feasibility in real-time applications.To address this issue,we propose Token Masked Pose Transformers(TMPose),constructing an efficient Transformer network for pose estimation.This network applies semantic-level masking to tokens and employs three different masking strategies to optimize model performance,aiming to reduce computational complexity.Experimental results show that TMPose reduces computational complexity by 61.1%on the COCO validation dataset,with negligible loss in accuracy.Additionally,our performance on the MPII dataset is also competitive.This research not only enhances the accuracy of pose estimation but also significantly reduces the demand for computational resources,providing new directions for further studies in this field. 展开更多
关键词 Pattern recognition image processing neural network pose transformer
在线阅读 下载PDF
Data-driven measurement performance evaluation of voltage transformers in electric railway traction power supply systems
9
作者 Zhaoyang Li Muqi Sun +5 位作者 Jun Zhu Haoyu Luo Qi Wang Haitao Hu Zhengyou He Ke Wang 《Railway Engineering Science》 2025年第2期311-323,共13页
Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-s... Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-step,RMS data only method for evaluating VTs in TPSSs.First,a kernel principal component analysis approach is used to diagnose the VT exhibiting significant measurement deviations over time,mitigating the influence of stochastic fluctuations in traction loads.Second,a back propagation neural network is employed to continuously estimate the measurement deviations of the targeted VT.Third,a trend analysis method is developed to assess the evolution of the measurement performance of VTs.Case studies conducted on field data from an operational TPSS demonstrate the effectiveness of the proposed method in detecting VTs with measurement deviations exceeding 1%relative to their original accuracy levels.Additionally,the method accurately tracks deviation trends,enabling the identification of potential early-stage faults in VTs and helping prevent significant economic losses in TPSS operations. 展开更多
关键词 Voltage transformer Traction power supply system Measurement performance Data-driven evaluation Abrupt change detection Bootstrap confidence interval
在线阅读 下载PDF
Research on the Selection and Layout Scheme of Main Transformers in the Primary Electrical Design of New Energy Step-Up Stations
10
作者 Yuekai Liao 《Journal of Electronic Research and Application》 2025年第4期254-260,共7页
This paper focuses on the research of the main transformer selection and layout scheme for new energy step-up substations.From the perspective of engineering design,it analyzes the principles of main transformer selec... This paper focuses on the research of the main transformer selection and layout scheme for new energy step-up substations.From the perspective of engineering design,it analyzes the principles of main transformer selection,key parameters,and their matching with the characteristics of new energy.It also explores the layout methods and optimization strategies.Combined with typical case studies,optimization suggestions are proposed for the design of main transformers in new energy step-up substations.The research shows that rational main transformer selection and scientific layout schemes can better adapt to the characteristics of new energy projects while effectively improving land use efficiency and economic viability.This study can provide technical experience support for the design of new energy projects. 展开更多
关键词 New energy step-up substation Engineering design Main transformer selection
在线阅读 下载PDF
基于图像匹配的高空大斜视无源目标定位
11
作者 贾平 李昌灏 +3 位作者 孙辉 宋悦铭 祃卓荦 徐芳 《光学精密工程》 北大核心 2026年第1期124-138,共15页
提出一种基于图像匹配的无源定位方法,通过引入基于Transformer的特征增强与MiHo聚类筛选的两步匹配策略,减轻了高空大斜视条件下传统无源定位算法因微小角度误差导致的定位精度下降程度。根据粗定位结果与飞行参数对航拍图像进行近似... 提出一种基于图像匹配的无源定位方法,通过引入基于Transformer的特征增强与MiHo聚类筛选的两步匹配策略,减轻了高空大斜视条件下传统无源定位算法因微小角度误差导致的定位精度下降程度。根据粗定位结果与飞行参数对航拍图像进行近似正射变换,并截取对应区域的卫星图像。采用RepVGG提取图像粗特征,通过互最近邻实现初步匹配,并结合MiHo与归一化互相关(Normalized Cross Correlation,NCC)筛选匹配点对。最后,借助Transformer模块完成精细化匹配,再根据精匹配结果构建角度误差修正矩阵,多次迭代修正系统误差。实验结果表明,所提方法的定位精度较传统方法有较大幅度提升,在典型应用场景下提升约70%,在斜距90 km的情况下,定位精度可维持在120 m左右。该方法突破了传统无源定位对角度精度的高度依赖,验证了基于图像匹配的无源定位路径的可行性与有效性。 展开更多
关键词 图像匹配 目标定位 航空光电系统 无源定位 大斜视 TRANSFORMER
在线阅读 下载PDF
计及预案式失配冲击的响应驱动频率稳定紧急切负荷策略
12
作者 孙正龙 刘勇 +5 位作者 陈威翰 章锐 刘铖 华文 张程铭 蔡国伟 《电力系统保护与控制》 北大核心 2026年第1期117-129,共13页
在新型电力系统复杂工况下,以策略表为主体、通过“离线仿真、在线匹配”的预案式频率稳定控制方案存在较高失配风险,甚至因调控失当引发二次冲击,严重威胁电力系统的安全稳定运行。提出一种计及预案式失配冲击的响应驱动频率稳定紧急... 在新型电力系统复杂工况下,以策略表为主体、通过“离线仿真、在线匹配”的预案式频率稳定控制方案存在较高失配风险,甚至因调控失当引发二次冲击,严重威胁电力系统的安全稳定运行。提出一种计及预案式失配冲击的响应驱动频率稳定紧急切负荷策略。该策略动作在预案式控制之后,是对预案式控制的有益补充,能够有效提升系统频率稳定性。首先建立了基于系统频率响应(system frequency response,SFR)模型辨识的频率稳定切负荷量计算方法。提出了基于频率稀疏量测的SFR模型辨识方法,在此基础上建立了含稳定控制的SFR模型,根据频率稳定控制目标迭代求解切负荷量。其次,建立了基于Transformer网络的频率控制敏感点挖掘模型,通过分析关键发电机母线节点频率时序值和频率控制敏感点的映射关系,实现响应驱动的频率控制敏感点在线挖掘。最后,按照敏感点排序快速分配控制措施总量,构建频率稳定紧急控制方案。在某实际交直流混联万节点仿真系统验证了所提方法的有效性。 展开更多
关键词 预案式控制 频率稳定 紧急控制 频率响应模型 TRANSFORMER
在线阅读 下载PDF
基于BSimilar优化PTransformer的光伏功率短期预测
13
作者 张文广 蔡浩 +1 位作者 刘科 孙盼荣 《动力工程学报》 北大核心 2026年第1期77-84,102,共9页
为提高光伏功率短期预测的精度,提出了考虑光伏设备性能退化因素的相似日算法优化的分时段多通道独立光伏功率短期预测方法。首先,在PTransformer模型中用分时段与通道独立的方法来处理光伏输入数据,以降低空间复杂度及提高长时间数据... 为提高光伏功率短期预测的精度,提出了考虑光伏设备性能退化因素的相似日算法优化的分时段多通道独立光伏功率短期预测方法。首先,在PTransformer模型中用分时段与通道独立的方法来处理光伏输入数据,以降低空间复杂度及提高长时间数据序列的关注度。其次,运用Transformer的编码器模型,通过自身注意力机制捕捉光伏序列特征之间的依赖关系,进行光伏功率的短期预测。最后,运用夹角余弦距离计算相似度并考虑光伏设备性能退化因素确定相似日,利用其功率数据优化PTransformer模型,以改善功率数据的滞后性。结果表明:相比典型的光伏功率短期预测方法,所提方法训练速度更快,预测精准度更高,并且对复杂天气状况下的光伏功率也有较好的预测结果。 展开更多
关键词 光伏功率 短期预测 性能退化 贝叶斯分析 TRANSFORMER 相似日
在线阅读 下载PDF
基于Swin-PIDNet的纸质工程制图线型识别方法
14
作者 朱文博 陈龙飞 迟玉伦 《计算机应用研究》 北大核心 2026年第1期313-320,共8页
识别纸质工程制图图像的难点主要在于线型识别,针对纸质工程制图线型规范性差、跨度长、相对于背景图像尺寸小等问题,提出一种纸质工程制图线型识别Swin-PIDNet模型。用Swin Transformer替换PIDNet主干网络,在减少下采样的同时增强了模... 识别纸质工程制图图像的难点主要在于线型识别,针对纸质工程制图线型规范性差、跨度长、相对于背景图像尺寸小等问题,提出一种纸质工程制图线型识别Swin-PIDNet模型。用Swin Transformer替换PIDNet主干网络,在减少下采样的同时增强了模型长程建模能力;提出一种逐阶段解冻的迁移学习方法,提升模型对线型识别的训练效率和精度,平滑模型训练过程;针对工程制图线型的细长特征,嵌入注意力模块EMA到PAHDC模块中,从而改善背景信息淹没线型特征信息的问题;为处理线型类别不平衡问题,将Focal loss和Dice loss通过加权结合构建Swin-PIDNet的训练损失函数。实验证明该模型的评价指标MIoU为87.02%、MPA为95.42%、F 1分数为96.57%,相较于其他模型,该模型具有较强的线型识别能力,对纸质工程制图图像识别具有理论研究意义和实际应用价值。 展开更多
关键词 PIDNet Swin Transformer 线型识别 纸质工程制图 迁移学习 混合空洞卷积
在线阅读 下载PDF
基于多方位感知深度融合检测头的目标检测算法
15
作者 包晓安 彭书友 +3 位作者 张娜 涂小妹 张庆琪 吴彪 《浙江大学学报(工学版)》 北大核心 2026年第1期32-42,共11页
针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用... 针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用重参化大核卷积(RLK)模块,减小来自主干网络的特征空间差异,增强网络对中小型数据集的适应性;引入编码器选择保留模块(ESM),选择性地累积来自EDWE模块的输出,优化反向传播.实验结果表明,在规模较大的MS-COCO2017数据集上,所提算法应用于常见模型RetinaNet、FCOS、ATSS时使AP分别提升了2.9、2.6、3.4个百分点;在规模较小的PASCAL VOC2007数据集上,所提算法使3种模型的AP分别实现了1.3、1.0和1.1个百分点的提升.通过EDWE、RLK和ESM模块的协同作用,所提算法有效提升了目标检测精度,在不同规模的数据集上均展现了显著的性能优势. 展开更多
关键词 检测头 目标检测 Transformer编码器 深度融合 大核卷积
在线阅读 下载PDF
面向视觉算法的知识蒸馏研究综述
16
作者 潘海为 于丰铭 +3 位作者 张可佳 兰海燕 孟庆宇 李哲 《计算机研究与发展》 北大核心 2026年第1期90-122,共33页
知识蒸馏作为深度学习中的关键技术,通过将大型教师模型的知识传递给较小的学生模型,实现了模型的压缩与加速。在保证性能的前提下,显著减少了计算资源和存储需求,促进了高性能模型在资源受限的边缘设备上的部署。围绕知识蒸馏的最新研... 知识蒸馏作为深度学习中的关键技术,通过将大型教师模型的知识传递给较小的学生模型,实现了模型的压缩与加速。在保证性能的前提下,显著减少了计算资源和存储需求,促进了高性能模型在资源受限的边缘设备上的部署。围绕知识蒸馏的最新研究进展进行了系统性的综述,从知识类型和师生模型架构2个角度对知识蒸馏进行分类,详细汇总了输出特征知识、中间特征知识、关系特征知识3种典型知识类型的蒸馏方法,以及卷积架构到卷积架构、卷积架构到ViT(vision Transformer)架构、ViT架构到卷积架构和ViT架构到ViT架构的蒸馏方法;探讨了离线蒸馏、在线蒸馏、自蒸馏、无数据蒸馏、多教师蒸馏和助理蒸馏的学习方式;归纳了基于蒸馏过程、知识结构、温度系数及损失函数的蒸馏优化方法,分析了对抗性技术、自动机器学习、强化学习和扩散模型对蒸馏的改进,并总结了蒸馏技术在常见应用中的实现。尽管知识蒸馏取得了显著进展,但在实际应用和理论研究中仍面临诸多挑战。最后,对这些问题进行了深入分析,并对未来发展方向提出了见解。 展开更多
关键词 知识蒸馏 模型压缩 深度学习 卷积神经网络 视觉Transformer
在线阅读 下载PDF
融合群分解与Transformer-KAN的短期风速预测
17
作者 史加荣 张思怡 《南京信息工程大学学报》 北大核心 2026年第1期60-68,共9页
针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列... 针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列,建立Transformer-KAN模型,所建模型充分利用了Transformer的时序处理能力和KAN的非线性逼近能力.最后,对所有子序列的预测结果进行叠加,得到最终的风速预测值.为了验证所提出模型的有效性,将其与其他模型进行实验对比,结果表明,SWD-Transformer-KAN模型具有最优的预测性能,其决定系数(R2)高达99.91%. 展开更多
关键词 风速预测 群分解 TRANSFORMER Kolmogorov-Arnold网络
在线阅读 下载PDF
基于近红外光谱与Transformer的烟叶感官指标预测方法
18
作者 张云伟 张健涛 +3 位作者 张海 周渭皓 李斌 陶成金 《农业机械学报》 北大核心 2026年第1期386-396,共11页
为克服传统卷烟配方设计与维护过程中存在的主观性强、过度依赖人工经验及感官评吸等技术瓶颈,利用“近红外光谱-化学成分-感官指标”的间接关联,提出了一种基于近红外光谱与Transformer架构的端到端烟叶感官质量指标预测方法。首先采用... 为克服传统卷烟配方设计与维护过程中存在的主观性强、过度依赖人工经验及感官评吸等技术瓶颈,利用“近红外光谱-化学成分-感官指标”的间接关联,提出了一种基于近红外光谱与Transformer架构的端到端烟叶感官质量指标预测方法。首先采用Savitzky-Golay卷积平滑法(SG)、一阶导数法(D1)、多元散射校正(MSC)3种光谱预处理技术有效消除基线漂移和散射干扰;进而设计了一种面向光谱数据特征的Transformer预测模型,实现了烟叶感官质量三维评价体系(风格特征:清香、甜香、焦香;烟气特征:浓度、劲头;质量特征:香气质、香气量、杂气、刺激、余味)的精准预测,并采用了SHAP方法对模型进行分析,增强了模型的可解释性。结果表明,模型对各感官指标测试集预测的平均绝对误差均不高于0.56,具有较好可用性;针对不同感官指标,模型表现出对不同光谱特征波段的捕捉,有效挖掘了光谱特征的协同作用机制,具有较好可解释性。在此基础上,进一步结合多维相似度分析设计了一种辅助烟叶替代方法,可为烟叶替代与配方优化提供量化决策支持。 展开更多
关键词 烟叶感官指标 近红外光谱 TRANSFORMER 预测模型 烟叶替代
在线阅读 下载PDF
基于Transformer模型堤坝渗漏入口精准识别方法研究
19
作者 梁越 赵硕 +4 位作者 喻金桃 许彬 张斌 龚胜勇 舒云林 《岩土工程学报》 北大核心 2026年第1期187-195,共9页
渗漏是堤坝工程面临的主要安全隐患,渗漏入口精确识别与定位对降低堤坝风险至关重要。通过堤坝渗漏入口示踪剂分布及其运移特征模拟数据,训练学习Transformer模型以确定最优参数条件并分析该条件下该模型的预测效果,进一步通过室内模型... 渗漏是堤坝工程面临的主要安全隐患,渗漏入口精确识别与定位对降低堤坝风险至关重要。通过堤坝渗漏入口示踪剂分布及其运移特征模拟数据,训练学习Transformer模型以确定最优参数条件并分析该条件下该模型的预测效果,进一步通过室内模型试验验证该模型的可靠性。研究表明:①当迭代次数达600次时,模型预测的流速最大值相对误差最小,且最大流速值坐标与真实渗漏入口坐标最为接近,预测效果最佳;在此条件下,当数据采集时长为50 s时,模型预测的流速最大值相对偏差最小,预测效果最优。②在最佳迭代次数和数据采集时长条件下,模型预测精度超过95%,渗漏入口大小和渗漏流量的预测值与真实值差异极小,且流速和位置预测相对误差均较低,其中位置预测相对误差低于5%。③将电导率试验采集数据转换为示踪剂浓度并输入至该模型进行流速分布预测,可知该模型能准确定位渗漏入口位置,且流速和渗漏入口坐标的预测平均相对误差均低于10%,进而验证了该模型在渗漏入口定位中的有效性与准确性。相关研究成果可为堤坝渗漏入口精确识别奠定理论基础和提供技术支撑。 展开更多
关键词 堤坝 渗漏入口 Transformer模型 精准识别 室内模型试验
原文传递
基于线性注意和类别关联特征学习的在线动作检测
20
作者 詹永照 孙慧敏 +1 位作者 夏惠芬 任晓鹏 《江苏大学学报(自然科学版)》 北大核心 2026年第1期39-47,63,共10页
为了在在线动作检测中充分合理利用动作的上下文特征、与类别关联的特征和预测的未来特征快速检测相应动作,提出基于线性注意和类别关联特征学习的在线动作检测方法.该方法改进了Transformer构架,采用哈达玛积的轻型线性自注意实现Trans... 为了在在线动作检测中充分合理利用动作的上下文特征、与类别关联的特征和预测的未来特征快速检测相应动作,提出基于线性注意和类别关联特征学习的在线动作检测方法.该方法改进了Transformer构架,采用哈达玛积的轻型线性自注意实现Transformer视频上下文特征学习,以减少计算开销;其次对训练样本动作特征进行聚类,将视频序列上下文特征与动作类别特征进行关联学习,有效获得与类别关联的特征表达;最后融合动作的上下文特征、与类别关联的特征和预测的未来特征检测相应时刻动作,以提升动作鉴别性.在典型数据集上进行性能试验,完成了超参取值分析,对比了不同方法的工作精度和运行效率.给出了消融试验和可视化分析.结果表明:在Thumos14(TSN-Anet)、Thumos14(TSN-Kinetics)和HDD数据集上,所提出方法的mAP比Colar方法分别提高了0.2、0.5、0.2百分点,可见新方法优于目前较先进的Colar方法. 展开更多
关键词 在线动作检测 深度学习 注意力机制 编码 上下文特征 TRANSFORMER 类别关联特征学习
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部