期刊文献+
共找到15,601篇文章
< 1 2 250 >
每页显示 20 50 100
融合群分解与Transformer-KAN的短期风速预测
1
作者 史加荣 张思怡 《南京信息工程大学学报》 北大核心 2026年第1期60-68,共9页
针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列... 针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列,建立Transformer-KAN模型,所建模型充分利用了Transformer的时序处理能力和KAN的非线性逼近能力.最后,对所有子序列的预测结果进行叠加,得到最终的风速预测值.为了验证所提出模型的有效性,将其与其他模型进行实验对比,结果表明,SWD-Transformer-KAN模型具有最优的预测性能,其决定系数(R2)高达99.91%. 展开更多
关键词 风速预测 群分解 transformer Kolmogorov-Arnold网络
在线阅读 下载PDF
基于Transformer-卷积神经网络模型实现单节点腰部康复训练动作识别任务
2
作者 余圣涵 成贤锴 +1 位作者 郑跃 杨颖 《中国组织工程研究》 北大核心 2026年第16期4125-4136,共12页
背景:惯性测量单元被广泛用于人体姿态感知与动态捕捉。深度学习已逐步替代传统规则与特征工程,广泛应用于动作识别任务。卷积神经网络在提取局部动态特征方面表现良好,Transformer则在建模长时序依赖方面展现出强大能力。目的:通过基于... 背景:惯性测量单元被广泛用于人体姿态感知与动态捕捉。深度学习已逐步替代传统规则与特征工程,广泛应用于动作识别任务。卷积神经网络在提取局部动态特征方面表现良好,Transformer则在建模长时序依赖方面展现出强大能力。目的:通过基于Transformer-卷积神经网络融合模型识别方法,实现在单惯性传感器条件下的腰部康复训练动作识别任务。方法:采集6名健康受试者佩戴单个惯性传感器条件下执行腰部康复动作的加速度与角速度数据,以动作类型为数据进行标注,制作腰部康复动作数据集。通过腰部康复动作数据集对Transformer-卷积神经网络融合模型进行训练,构建动作分类模型。通过留一交叉验证评估模型准确性,并与线性判别分析、支持向量机、多层感知、经典Transformer等模型进行性能对比。结果与结论:在5类动作识别任务中,Transformer-卷积神经网络模型准确率达96.67%,F1-score为0.9669。在单传感器输入的条件下,相较于传统模型,在识别精度与泛化能力方面具有明显优势。验证了基于单惯性测量单元数据的深度模型在腰部康复动作分类任务中的实用性,为轻量化、高部署性的居家腰部康复训练系统提供基础。 展开更多
关键词 慢性腰痛 康复训练 深度学习 transformer 单节点惯性传感器 动作分类
暂未订购
Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems
3
作者 Zhichen Zhang Gen Qiu +1 位作者 Yuhua Cheng Min Wang 《Journal of Automation and Intelligence》 2025年第3期217-226,共10页
Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current ... Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively. 展开更多
关键词 Power electronic systems Anomaly detection transformer network Dense connection Unsupervised learning DDformer
在线阅读 下载PDF
A fast configuration method for external cooling system of power transformer considering energy loss
4
作者 Lujia Wang Mengzhi Sun +2 位作者 Zhenlu Cai Haitao Yang Xibo Wu 《iEnergy》 2025年第4期269-277,共9页
Radiator cooling configurations need to account for both efficient heat dissipation and energy conservation requirements.Rapid and rational determination of cooling system configurations constitutes a critical aspect ... Radiator cooling configurations need to account for both efficient heat dissipation and energy conservation requirements.Rapid and rational determination of cooling system configurations constitutes a critical aspect of transformer design,enhancing electrical power energy utilization efficiency.Computational fluid dynamics(CFD)is widely recognized as a well-established technique for simulating and optimizing heat dissipation systems.However,this approach is time-consuming because of pre-processing procedures,such as meshing.This paper proposes a fast iterative optimization model for calculating the outlet oil temperature and airflow distribution.Based on the analytical model results,this paper identifies the optimal energy-saving range for radiator cooling configurations,incorporating the cooperative effects of cooling efficiency,air pressure drop during heat transfer,and inlet–outlet temperature difference.The analytical model demonstrated errors in energy dissipation and temperature difference calculations within an acceptable range.The calculation time was reduced by more than 99%.Radiator configurations within the optimal range effectively minimize energy waste while meeting the target temperature difference and enhancing cooling efficiency.Finally,the PC2600-22/520 radiator was utilized to validate the accuracy of the analytical model and the rationality of the co-optimal intervals. 展开更多
关键词 Power transformer oil temperature difference RADIATOR thermal efficiency air pressure drop
在线阅读 下载PDF
Data-driven measurement performance evaluation of voltage transformers in electric railway traction power supply systems
5
作者 Zhaoyang Li Muqi Sun +5 位作者 Jun Zhu Haoyu Luo Qi Wang Haitao Hu Zhengyou He Ke Wang 《Railway Engineering Science》 2025年第2期311-323,共13页
Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-s... Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-step,RMS data only method for evaluating VTs in TPSSs.First,a kernel principal component analysis approach is used to diagnose the VT exhibiting significant measurement deviations over time,mitigating the influence of stochastic fluctuations in traction loads.Second,a back propagation neural network is employed to continuously estimate the measurement deviations of the targeted VT.Third,a trend analysis method is developed to assess the evolution of the measurement performance of VTs.Case studies conducted on field data from an operational TPSS demonstrate the effectiveness of the proposed method in detecting VTs with measurement deviations exceeding 1%relative to their original accuracy levels.Additionally,the method accurately tracks deviation trends,enabling the identification of potential early-stage faults in VTs and helping prevent significant economic losses in TPSS operations. 展开更多
关键词 Voltage transformer Traction power supply system Measurement performance Data-driven evaluation Abrupt change detection Bootstrap confidence interval
在线阅读 下载PDF
层级特征融合Transformer的图像分类算法
6
作者 段士玺 王博 《电子科技》 2026年第2期72-78,共7页
针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级... 针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级的特征图,每个特征图包含不同层次的抽象特征表示。基于层级标签将ViT提取的特征映射为多级特征,运用层级特征融合策略整合不同层级信息,有效增强模型的分类性能。在CIFRA-10、CIFRA-100和CUB-200-2011这3个数据集将所提模型与多种先进深度学习模型进行对比和分析。在CIFRA-10数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为99.70%、98.80%和97.80%。在CIFRA-100数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为95.23%、93.54%和90.12%。在CUB-200-2011数据集,所提方法在第1层级和第2层级的分类精度分别为98.09%和93.66%。结果表明,所提模型的分类准确率优于其他对比模型。 展开更多
关键词 深度学习 卷积神经网络 transformer 图像分类 层级特征 特征融合 多头注意力 Vision transformer
在线阅读 下载PDF
SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention
7
作者 Seyong Jin Muhammad Fayaz +2 位作者 L.Minh Dang Hyoung-Kyu Song Hyeonjoon Moon 《Computers, Materials & Continua》 2026年第1期511-533,共23页
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b... Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation. 展开更多
关键词 Attention mechanism brain tumor segmentation channel-wise attention decoder deep learning medical imaging MRI transformer U-Net
在线阅读 下载PDF
基于Transformer的无人机故障检测研究
8
作者 张自旺 沈剑 +3 位作者 王晓光 刘繁 曹卓 贺斌娜 《机械设计与制造工程》 2026年第1期82-86,共5页
无人机故障检测作为保障飞行安全的核心技术,当前研究多依赖于仿真实验数据,并且传统方法难以有效捕捉飞行数据中的长程时空依赖关系。针对这些挑战,提出了一种基于Transformer架构的无人机故障检测方法,通过可学习位置编码和多头自注... 无人机故障检测作为保障飞行安全的核心技术,当前研究多依赖于仿真实验数据,并且传统方法难以有效捕捉飞行数据中的长程时空依赖关系。针对这些挑战,提出了一种基于Transformer架构的无人机故障检测方法,通过可学习位置编码和多头自注意力机制,构建传感器数据的时空依赖关系;同时结合焦点损失函数缓解类别不平衡问题。实验结果表明,该方法在真实飞行数据集上准确率达95%、F1分数达94%,相比基于LSTM和随机森林的故障检测方法展现更优的综合性能,并且在实时检测模拟中具有良好的可靠性,充分验证了其在真实飞行场景中的工程适用性。 展开更多
关键词 无人机 故障检测 transformer 焦点损失函数 实时检测模拟
在线阅读 下载PDF
Extreme Attitude Prediction of Amphibious Vehicles Based on Improved Transformer Model and Extreme Loss Function
9
作者 Qinghuai Zhang Boru Jia +3 位作者 Zhengdao Zhu Jianhua Xiang Yue Liu Mengwei Li 《哈尔滨工程大学学报(英文版)》 2026年第1期228-238,共11页
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili... Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics. 展开更多
关键词 Amphibious vehicle Attitude prediction Extreme value loss function Enhanced transformer architecture External information embedding
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
10
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention transformer
在线阅读 下载PDF
基于动态滑动时间窗口与Transformer的电动汽车充电负荷预测
11
作者 郝爽 祖国强 +2 位作者 贾明辉 张志杰 李少雄 《河北工业大学学报》 2026年第1期44-52,68,共10页
因电动汽车充电行为具有非线性、时变性,传统预测方法难以捕捉其负荷复杂特征,因此本文提出基于动态窗口与Transformer的电动汽车充电负荷预测方法。首先,引入结合萤火虫算法(firefly algorithm,FA)的变分模态分解(variational mode dec... 因电动汽车充电行为具有非线性、时变性,传统预测方法难以捕捉其负荷复杂特征,因此本文提出基于动态窗口与Transformer的电动汽车充电负荷预测方法。首先,引入结合萤火虫算法(firefly algorithm,FA)的变分模态分解(variational mode decomposition,VMD),利用FA算法优化VMD的超参数,提取不同频率模态分量,降低数据噪声与复杂度。其次,按各模态波动与变化率,用动态滑动时间窗口技术确定动态滑动时间大小。然后,根据动态滑动时间窗口调整长短期记忆网络(long short-term memory network,LSTM)-Transformer模型参数,将各模态分量与动态滑动时间窗口输入LSTM-Transformer模型,由LSTM负责捕捉短期动态,Transformer用于把握全局依赖,以此提升预测精度。最终,累加各分量预测值得出结果。经Palo Alto电动汽车负荷数据集验证,与固定时间窗口的VMD-LSTM-Transformer模型相比,所提方法的平均绝对百分比误差降低9.23%。 展开更多
关键词 电动汽车负荷预测 变分模态分解 萤火虫算法 动态滑动时间窗口 transformer
在线阅读 下载PDF
A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection
12
作者 Hamza Murad Khan Shakila Basheer +3 位作者 Mohammad Tabrez Quasim Raja`a Al-Naimi Vijaykumar Varadarajan Anwar Khan 《Computers, Materials & Continua》 2026年第1期1024-1048,共25页
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex... With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models. 展开更多
关键词 Fake news detection tokenization SMOTE text-to-text transfer transformer(T5) long short-term memory(LSTM) self-attention mechanism(SA) T5-SA-LSTM WELFake dataset FakeNewsPrediction dataset
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
13
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:5
14
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
多变量时序标记Transformer及其在电潜泵故障诊断中的应用 被引量:6
15
作者 李康 李爽 +2 位作者 高小永 李强 张来斌 《控制与决策》 北大核心 2025年第4期1145-1153,共9页
电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断... 电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法.然而,多数方法忽略了电潜泵数据的动态特性以及长时依赖特征提取困难的问题.针对上述问题,提出一种多变量时序标记Transformer神经网络来实现电潜泵故障诊断.该模型设计新的多变量时间序列标记策略,继承引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代传统Transformer神经网络解码器来简化模型复杂度.通过对油田现场故障数据分析,验证所提出方法的有效性.实验结果表明,所提出方法实现了10类电潜泵故障的精确诊断,相比于流行的深度学习方法诊断性能更优. 展开更多
关键词 电潜泵 transformer神经网络 深度学习 特征提取 故障诊断 多变量时序标记
原文传递
基于Transformer模型的时序数据预测方法综述 被引量:16
16
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 transformer模型
在线阅读 下载PDF
基于视觉Transformer多模型融合的风电机组异常状态监测 被引量:1
17
作者 向玲 高鑫 +3 位作者 姚青陶 苏浩 胡爱军 程砺锋 《太阳能学报》 北大核心 2025年第4期522-529,共8页
为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA... 为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA数据进行预处理,去除无效数据并选择输入参数。然后,构建融合LSTM的ViT预测模型,并引入统计学中KL散度作为检测指标,对目标参数预测值与真实值进行计算分析。最后采用核密度估计确定安全阈值,根据检测指标是否越过安全阈值来识别风电机组异常状态。通过将该模型应用于华北某风场进行实例分析,并与其他深度学习模型对比。结果表明:该方法相较于其他模型能更好识别出风电机组异常状态。 展开更多
关键词 风电机组 状态监测 长短期记忆网络 视觉transformer KL散度
原文传递
基于CNN-BiLSTM-Transformer的舰船中压直流全电推进系统故障诊断设计 被引量:1
18
作者 张建良 韩涛 季瑞松 《实验技术与管理》 北大核心 2025年第1期11-18,共8页
针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时... 针对舰船中压直流全电推进系统结构复杂度高、单元耦合性强、运行环境多变等特点造成的故障诊断准确性低和实时性差等问题,开展了基于CNN-BiLSTM-Transformer的故障诊断设计。首先,基于卷积神经网络CNN构建单点特征级联网络,开展单一时刻下故障信号空间特征的深入提取,以提升故障特征提取的有效性;其次,以双向长短期记忆网络BiLSTM为核心设计多点特征依赖网络,利用门控机制和双向时序学习机制,实现故障信号在多个时刻之间特征依赖关系的有效学习,以提升故障诊断的准确性;然后,以Transformer为核心建立序列特征并行处理网络,通过自注意力机制实现对故障特征上下文关系的精确刻画,进而利用多头注意力机制实现特征序列的并行处理,以提升故障诊断的实时性;最后,设计舰船中压直流全电推进系统故障诊断实验方案,并开展不同故障模式下的诊断性能评估。该文方法在多种故障模式下诊断准确率和实时性均优于现有的主流故障诊断方法,有助于为舰船中压直流全电推进系统的安全运行提供更有力的技术保障。 展开更多
关键词 舰船 中压直流 全电推进系统 故障诊断 transformer
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
19
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 transformer 注意力模块 梯度融合
在线阅读 下载PDF
基于改进Transformer结构的电力绝缘子运动模糊图像复原网络 被引量:1
20
作者 李鹏 常乐 +2 位作者 覃发富 孟庆伟 陈继明 《电网技术》 北大核心 2025年第6期2623-2631,I0143-I0146,共13页
针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的... 针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的复原需求,在Transformer网络结构上引入条带注意力模块,结合卷积神经网络,在减小内存空间需求和不依赖大量训练数据的同时实现高效的模糊绝缘子图像复原;同时,在网络目标函数中引入对比学习损失,充分地挖掘和利用清晰与模糊电力绝缘子图像的关联信息。构建运动模糊绝缘子图像数据集进行图像复原与缺陷检测实验,结果表明,该文的运动模糊绝缘子图像复原方法在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structure similarity index measure,SSIM)这两个指标上均高于Deblur GAN-v2、MIMO-UNet等主流算法,使用目标检测算法YOLOv5和YOLOv7对去模糊前后的绝缘子进行定位与自爆缺陷检测后显示该文方法在提升高压输电线路巡检任务中绝缘子定位与缺陷检测的准确率上具有实际应用意义。 展开更多
关键词 运动模糊图像复原 transformer 对比学习 绝缘子及缺陷检测
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部