The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the sla...The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases(anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.展开更多
The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack form...The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack formation mechanism were revealed.The yield strength and work hardening rate increase significantly with increasing impact strain rate.Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing.Contrary to crack initiation mechanism facilitated by adiabatic shear bands,we find that high-density co-axial nanocrystalline grains form near cracks,which leads to local softening and promotes crack initiation and rapid propagation.Most grains have similar<1^(-)21^(-)0>orientations,with unique misorientation of 24°,32°,62°,78°and 90°between adjacent grains,suggesting that these grains are primarily formed by interface transformation,which exhibits distinct differences from recrystallized grains.Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.展开更多
ISO13584(PLIB) is an international standard, which is established to realize computer’s identification of data expression and data exchange of part library. In this international standard, part expression methodology...ISO13584(PLIB) is an international standard, which is established to realize computer’s identification of data expression and data exchange of part library. In this international standard, part expression methodology of part library is an important characteristic, which distinguishes itself from STEP. So, the methodology is a focus in the research of part library. This article describes the principles of part information expression of part library based on ISO13584, and the research results of the methodology in details.展开更多
基金supported by the Open Research Fund of the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Ministry of EducationWuhan University of Science and Technology (FMRU2007K10)
文摘The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases(anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.
基金support from the National Natural Science Foundation of China(Grant Nos.52301137,51974097,52364050)the Natural Science Special Foundation of Guizhou University(No.(2023)20)+1 种基金Guizhou Province Science and Technology Project(Grant Nos.[2023]001,[2019]2163)Guiyang city Science and Technology Project(Grant No.[2023]48-16).
文摘The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack formation mechanism were revealed.The yield strength and work hardening rate increase significantly with increasing impact strain rate.Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing.Contrary to crack initiation mechanism facilitated by adiabatic shear bands,we find that high-density co-axial nanocrystalline grains form near cracks,which leads to local softening and promotes crack initiation and rapid propagation.Most grains have similar<1^(-)21^(-)0>orientations,with unique misorientation of 24°,32°,62°,78°and 90°between adjacent grains,suggesting that these grains are primarily formed by interface transformation,which exhibits distinct differences from recrystallized grains.Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.
文摘ISO13584(PLIB) is an international standard, which is established to realize computer’s identification of data expression and data exchange of part library. In this international standard, part expression methodology of part library is an important characteristic, which distinguishes itself from STEP. So, the methodology is a focus in the research of part library. This article describes the principles of part information expression of part library based on ISO13584, and the research results of the methodology in details.