期刊文献+
共找到15,193篇文章
< 1 2 250 >
每页显示 20 50 100
Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation 被引量:2
1
作者 Bipasha Chakravarty Gefu Wang-Pruski 《Advances in Bioscience and Biotechnology》 2010年第5期409-416,共8页
An efficient and rapid Agrobacterium tumefaciens-mediated transformation protocol was developed to generate activation-tagged mutant lines with the aim of large-scale functional analysis of the potato genome. The expl... An efficient and rapid Agrobacterium tumefaciens-mediated transformation protocol was developed to generate activation-tagged mutant lines with the aim of large-scale functional analysis of the potato genome. The explants were inoculated with an Agrobacterium strain harboring the binary plasmid pSKI074 containing four CaMV 35S enhancers in the T-DNA region which activates the downstream genes in the host plant after its integration. Various parameters investigated to increase transformation efficiency were the type and age of explant, cultivar, hormone combinations, preculture of explants, period of co-cultivation with bacteria and concentration of bacterial cultures used for transformation. Stem explants from 5 week old plantlets of cv. Bintje which had undergone phytohormone pretreatment for 4 days, inoculation with diluted bacterial concentration of OD600 = 0.2 containing acetosyringone followed by 2 days of co-cultivation and selection in media with IAA and trans-zeatin all helped in greatly improving the transformation efficiency. The total time required from infection to rooted shoots was 6-7 weeks. Initial evidence for stable integration and expression of the transgenes by PCR analysis showed that over 93% of the regenerated lines were transgenic and this was confirmed by Southern hybridization. 展开更多
关键词 BACTERIAL Concentration CULTIVAR EXPLANT POTATO Transformation Preculture
暂未订购
基于Transformer的时间序列预测方法综述 被引量:4
2
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 Transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于Transformer模型的时序数据预测方法综述 被引量:13
3
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 Transformer模型
在线阅读 下载PDF
多变量时序标记Transformer及其在电潜泵故障诊断中的应用 被引量:2
4
作者 李康 李爽 +2 位作者 高小永 李强 张来斌 《控制与决策》 北大核心 2025年第4期1145-1153,共9页
电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断... 电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法.然而,多数方法忽略了电潜泵数据的动态特性以及长时依赖特征提取困难的问题.针对上述问题,提出一种多变量时序标记Transformer神经网络来实现电潜泵故障诊断.该模型设计新的多变量时间序列标记策略,继承引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代传统Transformer神经网络解码器来简化模型复杂度.通过对油田现场故障数据分析,验证所提出方法的有效性.实验结果表明,所提出方法实现了10类电潜泵故障的精确诊断,相比于流行的深度学习方法诊断性能更优. 展开更多
关键词 电潜泵 Transformer神经网络 深度学习 特征提取 故障诊断 多变量时序标记
原文传递
基于改进去噪扩散概率模型的风电机组故障样本生成方法 被引量:2
5
作者 孟昱煜 张沣琦 +2 位作者 火久元 常琛 陈峰 《振动与冲击》 北大核心 2025年第4期286-297,共12页
为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran... 为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。 展开更多
关键词 DDPM TRANSFORMER 风电机组 故障诊断 样本生成
在线阅读 下载PDF
医疗领域的大型语言模型综述 被引量:1
6
作者 肖建力 许东舟 +4 位作者 王浩 刘敏 周雷 朱林 顾松 《智能系统学报》 北大核心 2025年第3期530-547,共18页
深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言... 深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。 展开更多
关键词 人工智能 深度学习 TRANSFORMER 大型语言模型 智慧医疗 数据分析 图像处理 计算机视觉
在线阅读 下载PDF
基于CBAM-TransUNet的地震断层识别方法 被引量:1
7
作者 王新 张薇 +2 位作者 陈同俊 张傲 赵砀 《煤炭学报》 北大核心 2025年第2期1192-1202,共11页
断层的检测和识别在煤炭勘探开采过程中至关重要,传统的人工解释断层方法已经无法满足实际生产的需求,基于深度学习的地震断层解释方法在断层分割领域表现较为出色。常规卷积神经网络(CNN)感受野有限,不能很好地利用全局信息,会导致一... 断层的检测和识别在煤炭勘探开采过程中至关重要,传统的人工解释断层方法已经无法满足实际生产的需求,基于深度学习的地震断层解释方法在断层分割领域表现较为出色。常规卷积神经网络(CNN)感受野有限,不能很好地利用全局信息,会导致一些预测的断层存在连续性不足和断层缺失等问题。Transformer具有提取全局信息的优势,引入CNN和Transformer融合的TransUNet网络,构建一种基于CBAM-TransUNet的地震断层识别方法对二维地震断层图像进行识别。首先,将CBAM-Block注意力模块融入TransUNet网络,将该模块分别加入CNN断层编码器部分和连接断层编码器与断层解码器的3层跳跃连接部分,同时从通道和空间2个维度增强地震断层图像的识别能力;其次,选择Dice损失函数和交叉熵损失函数联合优化的损失函数,使得断层图像分割更为准确,CBAM-TransUNet断层识别网络在合成地震数据集上获得的DICE值和IOU值分别提高到0.84和0.75,试验结果表明断层识别的连续性更强,明显优于其他经典分割方法;最后,利用构建的模型对荷兰近海北海F3区块真实地震数据集进行了断层解释。试验结果表明:基于CBAM-TransUNet的地震断层识别方法在去除冗余断层信息的同时能够有效识别出断层,在断层识别准确度和断层识别连续性方面表现优异,识别出的断层细节更加丰富,提高了断层识别的精度,可以有效应用于实际地震数据中识别断层。 展开更多
关键词 地震图像 断层识别 机器学习 注意力机制 TRANSFORMER
在线阅读 下载PDF
DPRT-YOLO:智能网联汽车复杂驾驶环境实时目标检测器 被引量:1
8
作者 董一兵 曾辉 +2 位作者 李建科 侯少杰 石磊 《计算机工程与应用》 北大核心 2025年第14期148-162,共15页
目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一... 目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一种面向智能网联汽车的实时目标检测器(DPRT-YOLO),通过对流行的YOLOv10模型进行改造,使其更加适用于复杂驾驶环境中的目标检测任务,并通过在NVIDIA边缘计算平台上开展消融和对比实验,验证了算法的有效性。设计了增强加权多分支特征融合网络(EWMFFN),引入浅层加权融合和多分支加权融合模块,消除特征融合过程中的层间干扰,设计星形拓扑特征交互结构,提升模型对小尺度目标的检测能力,同时保持了网络结构的轻量化设计。融合卷积门控线性单元(convolutional gated linear units,CGLU)与卷积加法自注意力(convolutional additive token mixer,CATM),通过局部-全局双通路机制建立小目标尺度信息的长期上下文关系并保持模型的轻量化。为了评估模型在真实算力场景中的检测性能,将其部署在NVIDIA Jetson Xavier Nx平台上,采用NVIDIA TensorRT FP16量化加速,在BDD100K和TT100K测试集上开展推理实验,并与基准模型进行对比,结果显示:(1)检测精度方面,与YOLOv10n和YOLO11n相比,改进模型的mAP@0.5指标分别提升了6.1和7.4个百分点,mAP@0.5:0.95指标分别提升了3.6和4.2个百分点,同时,参数量分别降低了26.1%和34.9%。(2)检测速度方面,改进模型Small和Nano两种版本的推理速度分别达到了29 FPS和35 FPS。实验结果表明:与参考模型相比,改进算法在复杂驾驶环境中的表现更加优异,在检测精度与检测速度之间达到了更好的平衡,适于部署在智能网联汽车的环境感知系统中。 展开更多
关键词 实时目标检测 复杂驾驶环境 DPRT-YOLO 多尺度特征融合 TRANSFORMER
在线阅读 下载PDF
基于改进Transformer结构的电力绝缘子运动模糊图像复原网络 被引量:1
9
作者 李鹏 常乐 +2 位作者 覃发富 孟庆伟 陈继明 《电网技术》 北大核心 2025年第6期2623-2631,I0143-I0146,共13页
针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的... 针对高压输电线路巡检航拍过程中产生的电力绝缘子图像运动模糊的失真情形,影响后续绝缘子定位及缺陷检测的问题,提出了一种基于改进Transformer结构的电力绝缘子图像运动模糊复原方法。为了适应电力绝缘子航拍图像中全局与局部模糊的复原需求,在Transformer网络结构上引入条带注意力模块,结合卷积神经网络,在减小内存空间需求和不依赖大量训练数据的同时实现高效的模糊绝缘子图像复原;同时,在网络目标函数中引入对比学习损失,充分地挖掘和利用清晰与模糊电力绝缘子图像的关联信息。构建运动模糊绝缘子图像数据集进行图像复原与缺陷检测实验,结果表明,该文的运动模糊绝缘子图像复原方法在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structure similarity index measure,SSIM)这两个指标上均高于Deblur GAN-v2、MIMO-UNet等主流算法,使用目标检测算法YOLOv5和YOLOv7对去模糊前后的绝缘子进行定位与自爆缺陷检测后显示该文方法在提升高压输电线路巡检任务中绝缘子定位与缺陷检测的准确率上具有实际应用意义。 展开更多
关键词 运动模糊图像复原 TRANSFORMER 对比学习 绝缘子及缺陷检测
原文传递
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
10
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
BMTA:多元场景下的大面积破损图像修复 被引量:1
11
作者 曹岩 辛子昊 +2 位作者 邬开俊 单宏全 郭炳森 《计算机科学与探索》 北大核心 2025年第6期1553-1563,共11页
针对图像修复过程中图像像素之间语义联系不连贯、大范围损坏图像的局部纹理细节修复效果不明显的问题,提出一种名为BMTA的单阶段图像修复网络模型,用于修复多场景下的大面积破损图像,使修复出的图像在人眼主观感受和客观评价指标上都... 针对图像修复过程中图像像素之间语义联系不连贯、大范围损坏图像的局部纹理细节修复效果不明显的问题,提出一种名为BMTA的单阶段图像修复网络模型,用于修复多场景下的大面积破损图像,使修复出的图像在人眼主观感受和客观评价指标上都有良好的表现。生成器模块通过在卷积层中穿插双重单向注意力模块来对输入图像进行特征压缩、重建和强化重要特征信息,将压缩的特征分通道进行局部特征提取和全局特征提取,利用分割条纹窗口建立全局信息联系,使用残差密集块对局部细节信息深度提取,并将所提取的特征进行融合。在解码器部分,为防止在解码过程中造成局部信息丢失和修复过程中对上下文信息理解的不准确,使用门控的线性自注意力模块来保证网络中信息的多层次保留,从而达到更接近原图的修复效果。使用鉴别器来评估修复结果,促使修复图像在结构和纹理上具有更好的表现性。在CelebA、StreetView以及Places2数据集上的表现均优于当前先进的图像修复算法。 展开更多
关键词 图像修复 注意力机制 TRANSFORMER 特征提取
在线阅读 下载PDF
多尺度特征融合的图像描述算法 被引量:1
12
作者 白雪冰 车进 吴金蔓 《计算机工程与应用》 北大核心 2025年第7期288-296,共9页
针对现有图像描述算法提取的图像特征信息不全面、编码器和解码器模型不统一的问题,提出了多尺度特征融合的图像描述算法。通过多尺度全局特征提取模块和区域特征提取模块分别得到图像的多尺度全局特征和区域特征,通过特征融合模块获得... 针对现有图像描述算法提取的图像特征信息不全面、编码器和解码器模型不统一的问题,提出了多尺度特征融合的图像描述算法。通过多尺度全局特征提取模块和区域特征提取模块分别得到图像的多尺度全局特征和区域特征,通过特征融合模块获得融合后的视觉特征,送入Transformer模型的编码器完成特征编码,通过Transformer模型的解码器生成图像描述内容。通过在MS-COCO数据集上进行实验,并且与当前的一些主流算法进行比较,实验结果表明,所提出的算法在CIDEr关键指标上得分为127.2%,比主流算法提高了3.5个百分点,其余指标也有不同程度的提高。同时,消融实验验证了算法的有效性,定性分析表明了所提出算法能够生成更准确更详细的图像描述。 展开更多
关键词 图像描述 多尺度全局特征 区域特征 TRANSFORMER
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
13
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(CNN) 时频变换 TRANSFORMER
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测 被引量:5
14
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 TRANSFORMER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
原文传递
双分支特征融合的视线估计算法 被引量:1
15
作者 薛楠 刘莉芬 李鹏程 《控制与决策》 北大核心 2025年第4期1247-1256,共10页
视线估计是一种预测人眼注视位置或注视方向的技术,在人机交互和计算机视觉的应用中发挥重要作用.针对特征的差异性和利用率不全面的问题,提出双分支特征融合的视线估计算法.首先,构建Agent Swin Transformer网络与残差网络相结合的双... 视线估计是一种预测人眼注视位置或注视方向的技术,在人机交互和计算机视觉的应用中发挥重要作用.针对特征的差异性和利用率不全面的问题,提出双分支特征融合的视线估计算法.首先,构建Agent Swin Transformer网络与残差网络相结合的双分支网络模型,对视线特征进行提取,由改进的Agent Swin Transformer网络构成全局特征提取分支,逐层提取全局语义特征;由残差网络构成局部特征提取分支,提取不同尺度下的局部细节特征.通过特征融合将特征张量连接在一起,增强模型的表征能力.其次, Agent Swin Transformer网络融合高效多尺度注意力模块(EMA)及空间和信道重建卷积模块(SCConv),以加强特征,保持信息有效性,降低复杂性和计算成本.最后,结合头部姿态估计进行视线估计得到最终的视线方向,以减少干扰因素对眼部外观的影响.在MPIIFaceGaze数据集上进行大量实验,实验结果表明,该方法的视线估计角度平均误差为4.23°,同当前主流的同类方法相比,所提出算法能够更为准确地进行视线估计. 展开更多
关键词 视线估计 双分支 特征融合 Agent Swin Transformer 残差网络 空间和信道重建卷积 高效多尺度注意力
原文传递
利用混合深度学习算法的时空风速预测 被引量:1
16
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
原文传递
基于标签构建与特征融合的多标签文本分类研究方法 被引量:2
17
作者 王旭阳 卢世红 《贵州师范大学学报(自然科学版)》 北大核心 2025年第1期105-114,共10页
目前存在的多标签文本分类任务算法,对于标签的建模不是很成熟,其中对于标签的依赖性问题,以及标签特征和文本特征的融合程度问题,均缺乏有效的处理方法。为了更有效地利用标签间的依赖关系,以及整合标签特征与文本特征的融合,提出了一... 目前存在的多标签文本分类任务算法,对于标签的建模不是很成熟,其中对于标签的依赖性问题,以及标签特征和文本特征的融合程度问题,均缺乏有效的处理方法。为了更有效地利用标签间的依赖关系,以及整合标签特征与文本特征的融合,提出了一种名为CGTCN的多标签文本分类模型。该模型从标签构建和特征融合的角度出发,通过CompGCN建模标签依赖关系,先利用Transformer中的多头交叉注意力机制初步融合标签特征和文本特征,然后再通过CorNet网络进一步捕获标签特征与文本特征之间的相关性,从而得到最终的标签预测。实验结果显示,与基准模型相比,该方法能够有效的提升模型性能,在多标签文本分类任务中取得更好的分类效果。 展开更多
关键词 多标签文本分类 CompGCN TRANSFORMER CorNet 标签相关性
在线阅读 下载PDF
基于改进Swin Transformer的人脸活体检测 被引量:2
18
作者 王旭光 卜辰宇 时泽宇 《中国测试》 北大核心 2025年第6期31-39,共9页
随着人脸识别技术的发展,人脸活体检测作为人脸识别系统的安全保障变得更加重要。但当前主流的人脸活体检测模型仅针对特定的检测场景及欺诈攻击方式,面对未知攻击的鲁棒性和泛化能力较差。为此,该文提出一种改进的Swin Transformer模型... 随着人脸识别技术的发展,人脸活体检测作为人脸识别系统的安全保障变得更加重要。但当前主流的人脸活体检测模型仅针对特定的检测场景及欺诈攻击方式,面对未知攻击的鲁棒性和泛化能力较差。为此,该文提出一种改进的Swin Transformer模型,即CDCSwin-T(central difference convolution Swin Transformer)模型。该模型以Swin Transformer为主干,利用其滑动窗口注意力机制提取人脸全局信息,同时引入中心差分卷积(central difference convolution,CDC)模块提取人脸局部信息,加强主干模型捕获真假人脸差异的能力,从而增强其面对未知攻击的鲁棒性;另外在主干模型中引入瓶颈注意力模块,引导模型关注人脸关键信息,加速模型训练;最终将主干模型不同阶段的多尺度信息进行自适应融合,进一步提升该文模型的泛化能力。CDCSwin-T模型在OULU-NPU数据集4个协议上的平均分类错误率(ACER)分别为0.2%,1.1%,(1.1±0.6)%,(2.8±1.4)%,在CASIA-MFSD和REPLAYATTACK数据集跨库测试上的半错误率(HTER)分别为14.1%,22.9%,均优于当前的主流模型,表明其面对未知攻击的鲁棒性和泛化能力均有所提升。 展开更多
关键词 人脸活体检测 Swin Transformer 瓶颈注意力模块 特征融合
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:2
19
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
原文传递
一个基于深度学习的预测式云集群资源弹性伸缩方法 被引量:1
20
作者 张文波 任翊鸣 +1 位作者 张洋洋 朱宏博 《小型微型计算机系统》 北大核心 2025年第3期612-619,共8页
随着算力网络中计算资源与虚拟化设备的广泛应用,在算力网络虚拟化中,针对云集群弹性伸缩策略基于阈值的响应式触发过程中存在的弹性滞后问题,提出一种基于Transformer的预测式云集群资源弹性伸缩方法(Predictive Cloud Cluster Resourc... 随着算力网络中计算资源与虚拟化设备的广泛应用,在算力网络虚拟化中,针对云集群弹性伸缩策略基于阈值的响应式触发过程中存在的弹性滞后问题,提出一种基于Transformer的预测式云集群资源弹性伸缩方法(Predictive Cloud Cluster Resource Elastic Scaling Method Based on Transformer,Cloudformer).该方法利用序列分解模块将云集群数据分解为趋势项和季节项,趋势项采用双系数网络分别对输入空间预测的均值和方差进行归一化和反归一化,季节项采用融合傅里叶变换的频域自注意力模型进行预测,并在模型训练过程中使用指数移动平均模型动态调整训练损失的误差范围.实验结果表明,对比最先进的五种预测式弹性伸缩算法,本文所提出的方法在保持较低的模型训练和推理时间下,不同预测窗口单变量与多变量预测均方误差分别降低了10.07%和10.01%. 展开更多
关键词 算力网络 云集群 弹性伸缩 TRANSFORMER Cloudformer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部