期刊文献+
共找到251,177篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism and Implementation Panths of Low-Altitude Economy in Promoting Transformation and Upgrading of Tourism Industry in Zhejiang Province
1
作者 Zhenzi GUO 《Asian Agricultural Research》 2025年第8期13-15,26,共4页
Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds tha... Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds that the low-altitude economy can effectively promote the development of high-end and diversified tourism in Zhejiang by innovating tourism formats,optimizing resource allocation,and enhancing tourist experiences.Besides,it analyzes the current development status of the low-altitude economy in Zhejiang and its potential for integration with tourism,revealing specific enabling pathways for tourism transformation,including low-altitude sightseeing,aviation tourism,and low-altitude sports.Finally,it proposes policy recommendations such as strengthening policy support,enhancing infrastructure development,and cultivating market entities.The findings aim to provide theoretical references and practical guidance for the high-quality development of tourism in Zhejiang Province. 展开更多
关键词 LOW-ALTITUDE ECONOMY transformation and upgrading of the tourism industry Action MECHANISM IMPLEMENTATION path ZHEJIANG Province
在线阅读 下载PDF
A Hybrid CNN-Transformer Framework for Normal Blood Cell Classification:Towards Automated Hematological Analysis
2
作者 Osama M.Alshehri Ahmad Shaf +7 位作者 Muhammad Irfan Mohammed M.Jalal Malik A.Altayar Mohammed H.Abu-Alghayth Humood Al Shmrany Tariq Ali Toufique A.Soomro Ali G.Alkhathami 《Computer Modeling in Engineering & Sciences》 2025年第7期1165-1196,共32页
Background:Accurate classification of normal blood cells is a critical foundation for automated hematological analysis,including the detection of pathological conditions like leukemia.While convolutional neural networ... Background:Accurate classification of normal blood cells is a critical foundation for automated hematological analysis,including the detection of pathological conditions like leukemia.While convolutional neural networks(CNNs)excel in local feature extraction,their ability to capture global contextual relationships in complex cellular morphologies is limited.This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification,laying the groundwork for future leukemia diagnostics.Methods:The proposed architecture integrates pre-trained CNNs(ResNet50,EfficientNetB3,InceptionV3,CustomCNN)with Vision Transformer(ViT)layers to combine local and global feature modeling.Four hybrid models were evaluated on the publicly available Blood Cell Images dataset from Kaggle,comprising 17,092 annotated normal blood cell images across eight classes.The models were trained using transfer learning,fine-tuning,and computational optimizations,including cross-model parameter sharing to reduce redundancy by reusing weights across CNN backbones and attention-guided layer pruning to eliminate low-contribution layers based on attention scores,improving efficiency without sacrificing accuracy.Results:The InceptionV3-ViT model achieved a weighted accuracy of 97.66%(accounting for class imbalance by weighting each class’s contribution),a macro F1-score of 0.98,and a ROC-AUC of 0.998.The framework excelled in distinguishing morphologically similar cell types demonstrating robustness and reliable calibration(ECE of 0.019).The framework addresses generalization challenges,including class imbalance and morphological similarities,ensuring robust performance across diverse cell types.Conclusion:The hybrid CNN-Transformer framework significantly improves normal blood cell classification by capturing multi-scale features and long-range dependencies.Its high accuracy,efficiency,and generalization position it as a strong baseline for automated hematological analysis,with potential for extension to leukemia subtype classification through future validation on pathological samples. 展开更多
关键词 Acute leukemia automated diagnosis blood cell classification convolution neural networks deep learning fine-tuning hematologic malignancy hybrid deep learning architecture leukemia subtype classification medical image analysis transfer learning vision transformers
暂未订购
结合并联Transformer和残差U-Net网络的水下图像增强 被引量:1
3
作者 陈清江 李宗莹 《电子科技》 2025年第8期57-65,共9页
针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Conv... 针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Convolution Transformer Block,HCTB)。综合了Transformer的捕获全局信息能力和卷积块捕获局部信息能力,并且在跳跃连接部分搭建了若干平行注意模块(Parallel Attention Module,PAM)来提取更重要的像素和通道信息。采用现有UIEB(Underwater Image Enhancement Benchmark dataset)配对数据集对网络进行训练。为验证所提算法的有效性,选取不同偏色程度的水下图像进行实验与测试。实验结果表明,所提模型较其他先进模型的峰值信噪比PSNR(Peak Single-to-Ratio)值提升了4.3%,获得了较好的主观和客观评价结果,有效提升了水下图像的增强水平。 展开更多
关键词 transformER U-Net
在线阅读 下载PDF
Transforming growth factor-β and toll-like receptor-4 polymorphisms are not associated with fibrosis in haemochromatosis 被引量:1
4
作者 Marnie J Wood Lawrie W Powell +2 位作者 Jeannette L Dixon V Nathan Subramaniam Grant A Ramm 《World Journal of Gastroenterology》 SCIE CAS 2013年第48期9366-9376,共11页
AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was... AIM:To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis.METHODS:A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied,with all subjects having liver biopsy data and DNA available for testing.This study assessed the association of eight single nucleotide polymorphisms(SNPs)in a total of six genes including toll-like receptor 4(TLR4),transforming growth factor-beta(TGF-β),oxoguanine DNA glycosylase,monocyte chemoattractant protein 1,chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity.Genotyping was performed using high resolution melt analysis and sequencing.The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration.RESULTS:There were significant associations between the cofactors of male gender(P=0.0001),increasing age(P=0.006),alcohol consumption(P=0.0001),steatosis(P=0.03),hepatic iron concentration(P<0.0001)and the presence of hepatic fibrosis.Of the candidate gene polymorphisms studied,none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors.We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied.Importantly,in this large,well characterised cohort of patients there was no association between SNPs for TGF-βor TLR4and the presence of fibrosis,cirrhosis or increasing fibrosis stage in multivariate analysis.CONCLUSION:In our large,well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis. 展开更多
关键词 HAEMOCHROMATOSIS Genetic polymorphism Liver FIBROSIS TOLL-LIKE receptor 4 Interleukin 10 MONOCYTE CHEMOATTRACTANT protein 1 Chemokine(C-C motif) ligand 2 transforming growth factor beta 8-oxoguanine DNA GLYCOSYLASE
暂未订购
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons 被引量:1
5
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
暂未订购
基于条件先验Swin Transformer的人脸图像超分辨重建
6
作者 郑方亮 王延年 +1 位作者 廉继红 阮佩 《电子科技》 2025年第2期35-41,共7页
针对现有基于Swin Transformer图像超分辨模型未对人脸图像进行预处理导致最终超分辨结果不佳的问题,文中提出了基于条件先验Swin Transformer的人脸图像超分辨重建方法。该方法利用人脸解析图融合Swin Transformer模型对人脸图像进行... 针对现有基于Swin Transformer图像超分辨模型未对人脸图像进行预处理导致最终超分辨结果不佳的问题,文中提出了基于条件先验Swin Transformer的人脸图像超分辨重建方法。该方法利用人脸解析图融合Swin Transformer模型对人脸图像进行预处理,使用条件先验对人脸超分问题进行优化,采用人脸解析图Parsing Map进行约束从而得到更有价值的先验信息。在深层特征提取阶段,将通道空间注意力机制融合Swin Transformer模块对特征组调整进行速度与精度的平衡。实验结果表明,所提方法在测试集上的峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)为32.21 dB,相较于现有模型具有一定提升。实验证明改进模型更适用于人脸,所生成结果更清晰、更真实,能够还原出更多人脸图像纹理细节。 展开更多
关键词 Swin transformer transformER
在线阅读 下载PDF
Bushen Tongluo recipe(补肾通络方)improves oxidative stress homeostasis,inhibits transforming growth factor/Notch signaling pathway,and regulates the lncRNA maternally expressed gene 3/miR-145 axis to delay diabetic kidney disease
7
作者 XU Bojun TAO Tian +3 位作者 ZHAO Liangbin ZHENG Hui ZHAN huakui GUO Julan 《Journal of Traditional Chinese Medicine》 2025年第3期561-570,共10页
OBJECTIVES:To investigate the effect of Bushen Tongluo recipe(BSTLR, 补肾通络方) on rats with diabetic kidney disease(DKD) and to explore the underlying mechanism of action. METHODS:The rat model of DKD was establishe... OBJECTIVES:To investigate the effect of Bushen Tongluo recipe(BSTLR, 补肾通络方) on rats with diabetic kidney disease(DKD) and to explore the underlying mechanism of action. METHODS:The rat model of DKD was established, and rats were treated with different doses of BSTLR. Body weight and the levels of urinary protein, α1-microglobulin, glucose, blood urea nitrogen, creatinine, Cystatin C, superoxide dismutase, malondialdehyde, and catalase were analyzed biochemically or by enzyme-linked immunosorbent assay. The pathological damage to renal tissues was assessed by hematoxylin-eosin staining. Immunohistochemical staining was carried out to detect the expression levels of fibronectin, E-cadherin, α-smooth muscle actin, laminin, vimentin, collagen type Ⅳ in kidney tissues. Western blot analysis was conducted to analyze the expression levels of Nephrin, Desmin, Podocin, transforming growth factor-β1, mothers against decapentaplegic homolog 3(Smad3), Notch1, jagged, hairy and enhancer of split 1(Hes1) in kidney tissues, and the expression levels of maternally expressed gene 3(MEG3) and mi R-145 were measured by quantitative reverse transcription-polymerase chain reaction. Moreover, dual-luciferase reporter assay was employed to verify the binding of mi R-145 to MEG3. RESULTS:BSTLR increased the body weight of DKD rats, effectively ameliorated the renal function and pathological injury in DKD, regulated the balance of renal oxidative stress, inhibited the TGF/Notch signaling pathway, and affected the variations in the lnc RNA MEG3/mi R-145 axis. CONCLUSION:BSTLR improved oxidative stress homeostasis, inhibited the TGF/Notch signaling pathway, and regulated the lnc RNA MEG3/mi R-145 axis, effectively delaying the progression of DKD. 展开更多
关键词 diabetic nephropathies oxidative stress transforming growth factors receptors Notch signal transduction RNA long noncoding maternally expressed gene 3 MIR-145 Bushen Tongluo recipe
原文传递
In-situ observations on interphase boundary migration and grain growth during α/γ phase transformation in iron-4.2%Cr alloy
8
作者 渡边忠雄 OBARA Kouichi TSUREKAWA Sadahiro 《材料与冶金学报》 CAS 2005年第2期91-91,共1页
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo... In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation. 展开更多
关键词 In-situ phase velocity stage effects crystal with random origin the range after new was more play over high MOST for The to DID BCC It be
在线阅读 下载PDF
Opportunities and challenges in transformer neural networks for battery state estimation:Charge,health,lifetime,and safety
9
作者 Jingyuan Zhao Xuebing Han +2 位作者 Yuyan Wu Zhenghong Wang Andrew F.Burke 《Journal of Energy Chemistry》 2025年第3期463-496,共34页
Battery technology plays a crucial role across various sectors,powering devices from smartphones to electric vehicles and supporting grid-scale energy storage.To ensure their safety and efficiency,batteries must be ev... Battery technology plays a crucial role across various sectors,powering devices from smartphones to electric vehicles and supporting grid-scale energy storage.To ensure their safety and efficiency,batteries must be evaluated under diverse operating conditions.Traditional modeling techniques,which often rely on first principles and atomic-level calculations,struggle with practical applications due to incomplete or noisy data.Furthermore,the complexity of battery dynamics,shaped by physical,chemical,and electrochemical interactions,presents substantial challenges for precise and efficient modeling.The Transformer model,originally designed for natural language processing,has proven effective in time-series analysis and forecasting.It adeptly handles the extensive,complex datasets produced during battery cycles,efficiently filtering out noise and identifying critical features without extensive preprocessing.This capability positions Transformers as potent tools for tackling the intricacies of battery data.This review explores the application of customized Transformers in battery state estimation,emphasizing crucial aspects such as charging,health assessment,lifetime prediction,and safety monitoring.It highlights the distinct advantages of Transformer-based models and addresses ongoing challenges and future opportunities in the field.By combining data-driven AI techniques with empirical insights from battery analysis,these pre-trained models can deliver precise diagnostics and comprehensive monitoring,enhancing performance metrics like health monitoring,anomaly detection,and early-warning systems.This integrated approach promises significant improvements in battery technology management and application. 展开更多
关键词 transformER BATTERY HEALTH LIFETIME SAFETY SOC SOH RUL Deep learning Artificial general intelligence
在线阅读 下载PDF
基于时序二维变换和多尺度Transformer的电能质量扰动分类方法 被引量:1
10
作者 王守相 李慧强 +3 位作者 赵倩宇 郭陆阳 王同勋 王洋 《电力系统自动化》 北大核心 2025年第7期198-207,共10页
随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利... 随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利用时序二维变换将一维PQD时间序列转换为一组基于多个周期的二维张量,以实现在二维空间中深入挖掘PQD信号中所包含的特征信息。然后,通过多尺度Transformer编码器模块提取PQD信号的多尺度特征图,利用多尺度Transformer解码器模块对多尺度特征图进行拼接和特征融合,有效合并在不同尺度上提取的特征图。最后,通过全连接层和Softmax分类器完成PQD分类任务。为验证所提方法的有效性,建立了含24种PQD的数据集对模型进行测试,结果表明所提方法对PQD信号具有较高的分类准确率和噪声鲁棒性。 展开更多
关键词 多尺度transformer
在线阅读 下载PDF
Establishment of an efficient Agrobacterium rhizogenes-mediated hairy root transformation method for subtropical fruit trees 被引量:1
11
作者 Mao Yin Yonghua Jiang +4 位作者 Yingjie Wen Fachao Shi Hua Huang Qian Yan Hailun Liu 《Horticultural Plant Journal》 2025年第4期1699-1702,共4页
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb... Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation. 展开更多
关键词 study gene function krenek plant genetic engineering hairy root transformation fruit trees agrobacterium rhizogenes subtropical fruit trees genetic transformation chinese cabbage li
在线阅读 下载PDF
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
12
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
联合双支路生成对抗网络与Transformer的全色与多光谱遥感图像融合
13
作者 姬云翔 康家银 马寒雁 《遥感学报》 北大核心 2025年第8期2641-2657,共17页
多光谱遥感图像具有能够反映丰富地物特征的光谱信息,但其空间分辨率较低,纹理信息相对不足。相反地,全色遥感图像的空间分辨率高,纹理信息丰富,但缺乏能够反映地物特征的丰富的光谱信息。通过图像融合技术可以将二者进行集成,以达到各... 多光谱遥感图像具有能够反映丰富地物特征的光谱信息,但其空间分辨率较低,纹理信息相对不足。相反地,全色遥感图像的空间分辨率高,纹理信息丰富,但缺乏能够反映地物特征的丰富的光谱信息。通过图像融合技术可以将二者进行集成,以达到各自的优势互补,从而使得融合所得的图像能够更好地满足下游任务的需要。为此,本文提出了一种无监督的基于双支路生成对抗网络与Transformer的多光谱与全色遥感图像融合方法。具体地,首先采用引导滤波将源图像(源多光谱和全色遥感图像)分解为呈现图像主体信息的基础层分量与体现图像纹理、细节信息的细节层分量;然后,将分解得到的多光谱和全色遥感图像的基础层分量进行级联,将二者分解得到的细节层分量也进行级联;其次,将级联后的基础层分量和细节层分量分别输入至双支路生成器的基础层支路和细节层支路中;接着,针对基础层分量与细节层分量各自不同的特性,分别采用Transformer网络和卷积神经网络进行特征信息提取,以便从基础层分支和细节层分支中分别提取得到全局光谱信息和局部纹理信息;最后,通过生成器和双判别器(基础层判别器和细节层判别器)之间不断地对抗训练,得到同时具有丰富光谱信息与高空间分辨率的融合图像。通过在公开的数据集上与多个有代表性的方法进行定性与定量的对比实验表明,本文所提方法具有一定优越性,即在主观视觉效果和客观评价指标上均取得了较好的融合效果。 展开更多
关键词 transformer网络
原文传递
基于Transformer异源匹配的无人机地理定位方法
14
作者 褚金奎 宋涛 张钟元 《电光与控制》 北大核心 2025年第9期104-110,共7页
随着无人机技术在近地遥感、装备运输等工程领域中的广泛应用,无人机自主定位导航技术逐渐成为研究的重点;针对GNSS拒止条件,根据低空环境无人机地理定位的需求,提出了一种基于Transformer异源匹配的无人机地理定位方法;对于无人机初始... 随着无人机技术在近地遥感、装备运输等工程领域中的广泛应用,无人机自主定位导航技术逐渐成为研究的重点;针对GNSS拒止条件,根据低空环境无人机地理定位的需求,提出了一种基于Transformer异源匹配的无人机地理定位方法;对于无人机初始位置检索任务,该方法实现了一种基于K倍扩充的检索匹配算法,能够使无人机检索到当前环境初始位置,同时提高了无人机初始位置检索的速度。实验结果表明:当无人机处于150 m及以上飞行高度环境中,初始位置检索准确率为90.4%,追踪定位位置均方根误差为12.4 m;通过K倍扩充处理后,初始位置检索时间从17.33 s减少至3.58 s,追踪定位匹配更新时间为0.158 s。仿真和实验证明了所提方法能够满足无人机在低空稀疏特征环境下的实时地理定位需求。 展开更多
关键词 transformER
在线阅读 下载PDF
融合CNN与Transformer的视网膜OCT图像积液分割方法 被引量:1
15
作者 陈宇洋 李峰 《电子科技》 2025年第3期47-59,共13页
针对积液区域尺寸小、形状异质、细节模糊等问题,文中将卷积神经网络(Convolutional Neural Networks,CNN)和Transformer相融合,提出了一种创新的多分支分割网络。该网络包括全卷积路径、Transformer路径和CNN-Transformer融合路径3个... 针对积液区域尺寸小、形状异质、细节模糊等问题,文中将卷积神经网络(Convolutional Neural Networks,CNN)和Transformer相融合,提出了一种创新的多分支分割网络。该网络包括全卷积路径、Transformer路径和CNN-Transformer融合路径3个关键路径。全卷积路径用于捕获病变区域的细节特征,Transformer路径提取了具有长范围依赖的多尺度非局部特征信息。融合路径同时利用了CNN和Transformer的优势弥补其他分支的不足之处,通过预测头整合3个分支的特征生成最终的分割图。在Kermany数据集、UMN数据集和DUKE数据集上针对视网膜内积液和视网膜下积液进行了视网膜积液分割性能测试。实验结果表明,所提方法的Dice系数为86.63%,交并比为77.02%,灵敏度为89.47%,精确度为85.51%,证明了其有效性,为视网膜积液自动分割问题提供了一种可行的解决方案。 展开更多
关键词 OCT transformER IRF SRF
在线阅读 下载PDF
The involvement of p38 MAPK in transforming growth factor β1-induced apoptosis in murine hepatocytes 被引量:15
16
作者 LiaoJH ChenJS 《Cell Research》 SCIE CAS CSCD 2001年第2期89-94,共6页
We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly ... We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis. 展开更多
关键词 Animals Apoptosis Cells Cultured DNA Fragmentation Enzyme Inhibitors Gene Expression Regulation Enzymologic Genes Reporter Genetic Vectors HEPATOCYTES IMIDAZOLES MAP Kinase Signaling System Mice Mitogen-Activated Protein Kinases Mutation Phosphorylation Plasminogen Activator Inhibitor 1 PYRIDINES Research Support Non-U.S. Gov't TRANSFECTION transforming Growth Factor beta p38 Mitogen-Activated Protein Kinases
暂未订购
多变量时序标记Transformer及其在电潜泵故障诊断中的应用 被引量:2
17
作者 李康 李爽 +2 位作者 高小永 李强 张来斌 《控制与决策》 北大核心 2025年第4期1145-1153,共9页
电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断... 电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法.然而,多数方法忽略了电潜泵数据的动态特性以及长时依赖特征提取困难的问题.针对上述问题,提出一种多变量时序标记Transformer神经网络来实现电潜泵故障诊断.该模型设计新的多变量时间序列标记策略,继承引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代传统Transformer神经网络解码器来简化模型复杂度.通过对油田现场故障数据分析,验证所提出方法的有效性.实验结果表明,所提出方法实现了10类电潜泵故障的精确诊断,相比于流行的深度学习方法诊断性能更优. 展开更多
关键词 transformer神经网络
原文传递
融合多尺度特征Transformer的高分辨率遥感图像变化检测 被引量:2
18
作者 李健慷 张桂欣 +2 位作者 祝善友 徐永明 李湘雨 《遥感学报》 北大核心 2025年第1期266-278,共13页
为了加强变化检测中深度学习网络的语义信息提取能力,捕获更多高阶多尺度特征细节以及突出影像差异信息,本文提出一种融合孪生结构和多尺度特征Transformer的高分辨率遥感影像变化检测模型MFTSNet(Multi-scale Feature Transformer Siam... 为了加强变化检测中深度学习网络的语义信息提取能力,捕获更多高阶多尺度特征细节以及突出影像差异信息,本文提出一种融合孪生结构和多尺度特征Transformer的高分辨率遥感影像变化检测模型MFTSNet(Multi-scale Feature Transformer Siamese Network)。该模型设计了语义特征Transformer模块ST(Semantic feature Transformer module)捕获不同层级特征图的语义信息,引入置入Transformer模块GT(Grounding Transformer module)和映射Transformer模块RT(Rendering Transformer module)加强低层和高层语义信息的获取,发掘高阶多尺度特征细节信息以及不同空间位置和通道间的全局上下文关系,进一步提升变化检测精度,增强地物检测结果的完整性、区域内部以及边缘细节。将MFTSNet与另外8种变化检测模型在4个公开数据集上的变化检测结果进行对比,并通过消融实验、参数分析等手段验证MFTSNet中各模块的有效性。对比实验结果表明MFTSNet网络模型在4个数据集上的F1和交并比IoU分别至少提高了0.465%、0.113%、0.369%、2.13%和0.723%、0.188%、0.304%、2.962%。消融实验表明GT、RT、ST 3个模块共同作用可有效提升网络模型性能。参数分析表明MFTSNet模型中的特征信息长度L与编码器—解码器个数是两个重要的网络结构参数,L在CDD、WHU-CD数据实验中取16,在SYSU-CD、LEVIR-CD数据实验中取8,4个数据集上设置(EN,DN)为(1,2)时,MFTSNet模型的检测结果最优。 展开更多
关键词 transformER
原文传递
A Robust Image Watermarking Based on DWT and RDWT Combined with Mobius Transformations
19
作者 Atheer Alrammahi Hedieh Sajedi 《Computers, Materials & Continua》 2025年第7期887-918,共32页
Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that... Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies. 展开更多
关键词 Digital watermarking Möbius transforms discrete wavelet transform redundant discrete wavelet transform genetic algorithm ROBUSTNESS geometric attacks
在线阅读 下载PDF
MLRT-UNet:An Efficient Multi-Level Relation Transformer Based U-Net for Thyroid Nodule Segmentation
20
作者 Kaku Haribabu Prasath R Praveen Joe IR 《Computer Modeling in Engineering & Sciences》 2025年第4期413-448,共36页
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to vari... Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models. 展开更多
关键词 Thyroid nodules endocrine system multi-level relation transformer U-Net self-attention external attention co-operative transformer fusion thyroid nodules segmentation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部