Chengdu teahouses,as core public spaces in marketplace society,have undergone transformative reconstruction-from“containers of everyday life”to“containers of commercial traffic and digital flows”-during the proces...Chengdu teahouses,as core public spaces in marketplace society,have undergone transformative reconstruction-from“containers of everyday life”to“containers of commercial traffic and digital flows”-during the process of modernization.Employing spatial archaeology as a methodology,combined with fieldwork and analysis of historical documents,this study systematically examines the diachronic evolution of architectural forms,functional orientations,and social networks within Chengdu teahouses.The study reveals the logic of spatial reconstruction under the interplay of multiple forces,including cultural heritage preservation,capital-driven development,and technological intervention.The findings identify three paradigms of spatial transformation in teahouses.First,heritage specimenization,which reinforces the continuity of collective memory through symbolic extraction but risks diminishing the vitality of everyday social interactions.Second,consumption upgrading,which caters to the demands of emerging groups through iterative business models yet necessitates vigilance against spatial differentiation eroding marketplace inclusivity.Third,digital parasitism,which expands communicative dimensions through technological empowerment but confronts the risk of flattening localized knowledge.These paradigms reflect both adaptive responses of traditional spaces to contemporary pressure and the tension of reconstruction imposed by instrumental rationality on marketplace networks.The study demonstrates that spatial transformation in Chengdu teahouses is not unidirectional alienation but rather a multifaceted configuration where the continuity of tradition coexists with innovative practices amid functional diversification.This research advocates for striking a balance between the preservation of traditional spaces and modern renewal and explores organic integration approaches for traditional and modern elements,thereby providing a theoretical framework and practical insights for the transformation of traditional public spaces.展开更多
本文提出了一种基于双交叉注意力融合的Swin-AK Transformer(Swin Transformer based on alterable kernel convolution)和手工特征相结合的智能手机拍摄图像质量评价方法。首先,提取了影响图像质量的手工特征,这些特征可以捕捉到图像...本文提出了一种基于双交叉注意力融合的Swin-AK Transformer(Swin Transformer based on alterable kernel convolution)和手工特征相结合的智能手机拍摄图像质量评价方法。首先,提取了影响图像质量的手工特征,这些特征可以捕捉到图像中细微的视觉变化;其次,提出了Swin-AK Transformer,增强了模型对局部信息的提取和处理能力。此外,本文设计了双交叉注意力融合模块,结合空间注意力和通道注意力机制,融合了手工特征与深度特征,实现了更加精确的图像质量预测。实验结果表明,在SPAQ和LIVE-C数据集上,皮尔森线性相关系数分别达到0.932和0.885,斯皮尔曼等级排序相关系数分别达到0.929和0.858。上述结果证明了本文提出的方法能够有效地预测智能手机拍摄图像的质量。展开更多
【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力...【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。展开更多
提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结...提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结构,提高了三维姿态估计的精度。在公开数据集Human3.6M上进行了仿真实验,验证了Transformer与图卷积融合算法的性能。实验结果显示,最终估计得到的三维人体关节点的平均关节点位置偏差(Mean Per Joint Position Error,MPJPE)为38.4 mm,相较于现有方法有一定提升,表明该方法具有较强的应用价值,可应用于许多下游相关工作中。展开更多
In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestri...In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.展开更多
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions...To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.展开更多
Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies a...Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy.展开更多
针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transfor...针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transformer的轻量化行人重识别(Lightweight Transformer-based Person Re-Identification,LTReID)算法,利用多头多注意力机制从全局角度提取人体不同部分特征,使用Circle损失和边界样本挖掘损失,以提高图像特征提取和细粒度图像检索性能,并利用快速掩码搜索剪枝算法对Transformer模型进行训练后轻量化,以提高模型的无人机平台部署能力。更进一步,提出一种可学习的面向无人机场景的空间信息嵌入,在训练过程中通过学习获得优化的非视觉信息,以提取无人机多视角下行人的不变特征,提升行人特征识别的鲁棒性。最后,在实际的无人机行人重识别数据库中,讨论了在不同量级主干网和不同剪枝率情况下所提LTReID算法的行人重识别性能,并与多种行人重识别算法进行了性能对比,结果表明了所提算法的有效性和优越性。展开更多
Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transf...Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.展开更多
The Yangtze River Delta(YRD) is a region in China with a serious contradiction between economic growth and environmental pollution. Exploring the spatiotemporal effects and influencing factors of air pollution in the ...The Yangtze River Delta(YRD) is a region in China with a serious contradiction between economic growth and environmental pollution. Exploring the spatiotemporal effects and influencing factors of air pollution in the region is highly important for formulating policies to promote the high-quality development of urban industries. This study uses the spatial Durbin model(SDM) to analyze the local direct and spatial spillover effects of industrial transformation on air pollution and quantifies the contribution of each factor. From 2008 to 2018, there was a significant spatial agglomeration of industrial sulfur dioxide emissions(ISDE) in the YRD, and every 1% increase in ISDE led to a synchronous increase of 0.603% in the ISDE in adjacent cities. The industrial scale index(ISCI) and industrial structure index(ISTI), as the core factors of industrial transformation, significantly affect the emissions of sulfur dioxide in the YRD, and the elastic coefficients are 0.677 and-0.368, respectively. The order of the direct effect of the explanatory variables on local ISDE is ISCI>ISTI>foreign direct investment(FDI)>enterprise technological innovation(ETI)>environmental regulation(ER)> per capita GDP(PGDP). Similarly, the order of the spatial spillover effect of all variables on ISDE in adjacent cities is ISCI>PGDP>FDI>ETI>ISTI>ER, and the coefficients of the ISCI and ISTI are 1.531 and 0.113, respectively. This study contributes to the existing research that verifies the environmental Kuznets curve in the YRD, denies the pollution heaven hypothesis, indicates the Porter hypothesis, and provides empirical evidence for the formation mechanism of regional environmental pollution from a spatial spillover perspective.展开更多
基金supported by the Research Center for Chengdu History and Chengdu Literature[CLWX24004]the Centre for Southeast Asia Economic and Culture Studies[DNY2415]the Sichuan Landscape and Recreation Research Center[JGYQ2025027].
文摘Chengdu teahouses,as core public spaces in marketplace society,have undergone transformative reconstruction-from“containers of everyday life”to“containers of commercial traffic and digital flows”-during the process of modernization.Employing spatial archaeology as a methodology,combined with fieldwork and analysis of historical documents,this study systematically examines the diachronic evolution of architectural forms,functional orientations,and social networks within Chengdu teahouses.The study reveals the logic of spatial reconstruction under the interplay of multiple forces,including cultural heritage preservation,capital-driven development,and technological intervention.The findings identify three paradigms of spatial transformation in teahouses.First,heritage specimenization,which reinforces the continuity of collective memory through symbolic extraction but risks diminishing the vitality of everyday social interactions.Second,consumption upgrading,which caters to the demands of emerging groups through iterative business models yet necessitates vigilance against spatial differentiation eroding marketplace inclusivity.Third,digital parasitism,which expands communicative dimensions through technological empowerment but confronts the risk of flattening localized knowledge.These paradigms reflect both adaptive responses of traditional spaces to contemporary pressure and the tension of reconstruction imposed by instrumental rationality on marketplace networks.The study demonstrates that spatial transformation in Chengdu teahouses is not unidirectional alienation but rather a multifaceted configuration where the continuity of tradition coexists with innovative practices amid functional diversification.This research advocates for striking a balance between the preservation of traditional spaces and modern renewal and explores organic integration approaches for traditional and modern elements,thereby providing a theoretical framework and practical insights for the transformation of traditional public spaces.
文摘本文提出了一种基于双交叉注意力融合的Swin-AK Transformer(Swin Transformer based on alterable kernel convolution)和手工特征相结合的智能手机拍摄图像质量评价方法。首先,提取了影响图像质量的手工特征,这些特征可以捕捉到图像中细微的视觉变化;其次,提出了Swin-AK Transformer,增强了模型对局部信息的提取和处理能力。此外,本文设计了双交叉注意力融合模块,结合空间注意力和通道注意力机制,融合了手工特征与深度特征,实现了更加精确的图像质量预测。实验结果表明,在SPAQ和LIVE-C数据集上,皮尔森线性相关系数分别达到0.932和0.885,斯皮尔曼等级排序相关系数分别达到0.929和0.858。上述结果证明了本文提出的方法能够有效地预测智能手机拍摄图像的质量。
文摘【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。
文摘提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结构,提高了三维姿态估计的精度。在公开数据集Human3.6M上进行了仿真实验,验证了Transformer与图卷积融合算法的性能。实验结果显示,最终估计得到的三维人体关节点的平均关节点位置偏差(Mean Per Joint Position Error,MPJPE)为38.4 mm,相较于现有方法有一定提升,表明该方法具有较强的应用价值,可应用于许多下游相关工作中。
基金the Foshan Science and technology Innovation Team Project(No.FS0AA-KJ919-4402-0060)the National Natural Science Foundation of China(No.62263018)。
文摘In view of the weak ability of the convolutional neural networks to explicitly learn spatial invariance and the probabilistic loss of discriminative features caused by occlusion and background interference in pedestrian re-identification tasks,a person re-identification method combining spatial feature learning and multi-granularity feature fusion was proposed.First,an attention spatial transformation network(A-STN)is proposed to learn spatial features and solve the problem of misalignment of pedestrian spatial features.Then the network was divided into a global branch,a local coarse-grained fusion branch,and a local fine-grained fusion branch to extract pedestrian global features,coarse-grained fusion features,and fine-grained fusion features,respectively.Among them,the global branch enriches the global features by fusing different pooling features.The local coarse-grained fusion branch uses an overlay pooling to enhance each local feature while learning the correlation relationship between multi-granularity features.The local fine-grained fusion branch uses a differential pooling to obtain the differential features that were fused with global features to learn the relationship between pedestrian local features and pedestrian global features.Finally,the proposed method was compared on three public datasets:Market1501,DukeMTMC-ReID and CUHK03.The experimental results were better than those of the comparative methods,which verifies the effectiveness of the proposed method.
文摘To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.
基金supported by the Urgent Need for Overseas Talent Project of Jiangxi Province(Grant No.20223BCJ25040)the Thousand Talents Plan of Jiangxi Province(Grant No.jxsg2023101085)+3 种基金the National Natural Science Foundation of China(Grant No.62106093)the Natural Science Foundation of Jiangxi(Grant Nos.20224BAB212011,20232BAB212008,20242BAB25078,and 20232BAB202051)The Youth Talent Cultivation Innovation Fund Project of Nanchang University(Grant No.XX202506030015)funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R759),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy.
文摘针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transformer的轻量化行人重识别(Lightweight Transformer-based Person Re-Identification,LTReID)算法,利用多头多注意力机制从全局角度提取人体不同部分特征,使用Circle损失和边界样本挖掘损失,以提高图像特征提取和细粒度图像检索性能,并利用快速掩码搜索剪枝算法对Transformer模型进行训练后轻量化,以提高模型的无人机平台部署能力。更进一步,提出一种可学习的面向无人机场景的空间信息嵌入,在训练过程中通过学习获得优化的非视觉信息,以提取无人机多视角下行人的不变特征,提升行人特征识别的鲁棒性。最后,在实际的无人机行人重识别数据库中,讨论了在不同量级主干网和不同剪枝率情况下所提LTReID算法的行人重识别性能,并与多种行人重识别算法进行了性能对比,结果表明了所提算法的有效性和优越性。
基金This work is supported by the National Nature Science Foundation of China(NSFC)under Grant No.61571106Jiangsu Natural Science Foundation under Grant No.BK20170757the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under grant No.17KJD510002.
文摘Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA23020101National Natural Science Foundation of China,No.41901181。
文摘The Yangtze River Delta(YRD) is a region in China with a serious contradiction between economic growth and environmental pollution. Exploring the spatiotemporal effects and influencing factors of air pollution in the region is highly important for formulating policies to promote the high-quality development of urban industries. This study uses the spatial Durbin model(SDM) to analyze the local direct and spatial spillover effects of industrial transformation on air pollution and quantifies the contribution of each factor. From 2008 to 2018, there was a significant spatial agglomeration of industrial sulfur dioxide emissions(ISDE) in the YRD, and every 1% increase in ISDE led to a synchronous increase of 0.603% in the ISDE in adjacent cities. The industrial scale index(ISCI) and industrial structure index(ISTI), as the core factors of industrial transformation, significantly affect the emissions of sulfur dioxide in the YRD, and the elastic coefficients are 0.677 and-0.368, respectively. The order of the direct effect of the explanatory variables on local ISDE is ISCI>ISTI>foreign direct investment(FDI)>enterprise technological innovation(ETI)>environmental regulation(ER)> per capita GDP(PGDP). Similarly, the order of the spatial spillover effect of all variables on ISDE in adjacent cities is ISCI>PGDP>FDI>ETI>ISTI>ER, and the coefficients of the ISCI and ISTI are 1.531 and 0.113, respectively. This study contributes to the existing research that verifies the environmental Kuznets curve in the YRD, denies the pollution heaven hypothesis, indicates the Porter hypothesis, and provides empirical evidence for the formation mechanism of regional environmental pollution from a spatial spillover perspective.