The efforts Xiamen has made in ecological protection over the last 20 years have helped it become a beautiful and clean city.TWENTY years ago,I had the opportunity to travel to the city of Xiamen in southeastern China...The efforts Xiamen has made in ecological protection over the last 20 years have helped it become a beautiful and clean city.TWENTY years ago,I had the opportunity to travel to the city of Xiamen in southeastern China’s Fujian Province.Unfortunately,due to the fact that I was in a rush,I did not have the chance to see the whole city.My memory of Xiamen was its pleasant climate and unforgettable beauty-I knew if I ever got the opportunity,I would revisit this place.Twenty years went by until I was able to return to this city again.After emerging from the airport,I realized that I had grown older,while Xiamen was becoming increasingly youthful and vibrant.What exactly had given this city such vitality?展开更多
The digitisation of musical manuscripts has transformed them from static heritage assets into dynamic data capital.This study explores how digitisation enhances the cultural value of musical manuscripts in low-resourc...The digitisation of musical manuscripts has transformed them from static heritage assets into dynamic data capital.This study explores how digitisation enhances the cultural value of musical manuscripts in low-resource contexts,focusing on Kyrgyz instrumental traditions(küü).Grounded in the SCP-R(Structure,Culture,Performance,and Resources)model,we analyse digitisation's impact through structural,cultural,performance,and resource dimensions.We propose a three-stage"embed–reconstruct–transform"framework,leveraging 12,400 folios and 2,300 hours of audio from the Kyrgyz National Conservatory.A Kyrgyz-tuned Transformer(MusicKG-T)trained with nomadic-path contrastive learning(CMCL-Kyrgyz)demonstrates that digitisation improves accessibility and usability,significantly increasing cultural and economic value.Findings offer a reproducible workflow for Silk-Road archives and highlight implications for music education and cultural policy.Future research should validate applicability to vocal traditions and other regions.展开更多
Dear Editor,As an important energy storage device,lithium-ion battery plays a vital role in electric aircrafts,which are new and promising equipment of transportation in the future with low carbon emissions.Accurate p...Dear Editor,As an important energy storage device,lithium-ion battery plays a vital role in electric aircrafts,which are new and promising equipment of transportation in the future with low carbon emissions.Accurate prediction of the state of charge(SOC)of lithium-ion batteries is of great importance in reducing the probability of abnormal accidents and ensuring flight safety.展开更多
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer...针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.展开更多
现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-re...现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.展开更多
文摘The efforts Xiamen has made in ecological protection over the last 20 years have helped it become a beautiful and clean city.TWENTY years ago,I had the opportunity to travel to the city of Xiamen in southeastern China’s Fujian Province.Unfortunately,due to the fact that I was in a rush,I did not have the chance to see the whole city.My memory of Xiamen was its pleasant climate and unforgettable beauty-I knew if I ever got the opportunity,I would revisit this place.Twenty years went by until I was able to return to this city again.After emerging from the airport,I realized that I had grown older,while Xiamen was becoming increasingly youthful and vibrant.What exactly had given this city such vitality?
文摘The digitisation of musical manuscripts has transformed them from static heritage assets into dynamic data capital.This study explores how digitisation enhances the cultural value of musical manuscripts in low-resource contexts,focusing on Kyrgyz instrumental traditions(küü).Grounded in the SCP-R(Structure,Culture,Performance,and Resources)model,we analyse digitisation's impact through structural,cultural,performance,and resource dimensions.We propose a three-stage"embed–reconstruct–transform"framework,leveraging 12,400 folios and 2,300 hours of audio from the Kyrgyz National Conservatory.A Kyrgyz-tuned Transformer(MusicKG-T)trained with nomadic-path contrastive learning(CMCL-Kyrgyz)demonstrates that digitisation improves accessibility and usability,significantly increasing cultural and economic value.Findings offer a reproducible workflow for Silk-Road archives and highlight implications for music education and cultural policy.Future research should validate applicability to vocal traditions and other regions.
基金supported in part by the Chunhui Project of the Ministry of Education of China(HZKY20220429)the Department of Science&Technology of Liaoning Province(2022-MS-300)the Educational Department of Liaoning Province(LJKMZ20220561)
文摘Dear Editor,As an important energy storage device,lithium-ion battery plays a vital role in electric aircrafts,which are new and promising equipment of transportation in the future with low carbon emissions.Accurate prediction of the state of charge(SOC)of lithium-ion batteries is of great importance in reducing the probability of abnormal accidents and ensuring flight safety.
文摘针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.
文摘现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.