Power transformers are vital components in electric grids;however,methods to optimise their loading to extend lifespan while accounting for insulation degradation remain underdeveloped.This research paper introduces a...Power transformers are vital components in electric grids;however,methods to optimise their loading to extend lifespan while accounting for insulation degradation remain underdeveloped.This research paper introduces a novel integrated data-driven framework that combines particle filtering and model predictive health(PF-MPH)model for the predictive health manage-ment of power transformers.Initially,the particle filter probabilistically estimates power transformers'remaining life(R_(L))using direct winding hotspot temperature(χ_(H))measurements.The obtained R_(L)will then be used to calculate the degree of poly-merisation(DP)level and assess the current insulation condition.After that,a comparative analysis between direct and model-basedχ_(H)measurement methods is performed to highlight the superior accuracy of direct measurements for predictive health management.Then,the MPH optimisation algorithm,which uses the R_(L)and DP forecasts from the PF method,derives an optimal trajectory over the transformer's R_(L)that balances the costs of increased loading against the benefits gained from prolonged insulation longevity.The findings show that the proposed PF-MPH model has successfully reduced the χ_(H)by 2.46%over the predicted 19 years.This approach is expected to enable grid operators to optimise transformer loading schedules to extend the R_(L)of these critical assets in a cost-effective manner.展开更多
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met...Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.展开更多
Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n...Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.展开更多
Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer ...Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface.展开更多
The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequen...The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.展开更多
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ...The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.展开更多
In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strong LFM component has strong suppression effect on that of the weak LFM component. A method named as Recursive Filtering RAT (RFRAT) algorithm i...In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strong LFM component has strong suppression effect on that of the weak LFM component. A method named as Recursive Filtering RAT (RFRAT) algorithm is proposed for solving this problem. By fully using of the Maximum Likelihood (ML) estimation value of the frequency modulation rate got by RAT, RFRAT can detect the noisy multi-LFM signals out step by step. The merit of this new method is validated by an illustrative example in low Signal-to-Noise-Ratio (SNR) condition.展开更多
基金supported by Shandong Provincial Natural Science Foundation(ZR2024ME229,ZR2024ZD29).
文摘Power transformers are vital components in electric grids;however,methods to optimise their loading to extend lifespan while accounting for insulation degradation remain underdeveloped.This research paper introduces a novel integrated data-driven framework that combines particle filtering and model predictive health(PF-MPH)model for the predictive health manage-ment of power transformers.Initially,the particle filter probabilistically estimates power transformers'remaining life(R_(L))using direct winding hotspot temperature(χ_(H))measurements.The obtained R_(L)will then be used to calculate the degree of poly-merisation(DP)level and assess the current insulation condition.After that,a comparative analysis between direct and model-basedχ_(H)measurement methods is performed to highlight the superior accuracy of direct measurements for predictive health management.Then,the MPH optimisation algorithm,which uses the R_(L)and DP forecasts from the PF method,derives an optimal trajectory over the transformer's R_(L)that balances the costs of increased loading against the benefits gained from prolonged insulation longevity.The findings show that the proposed PF-MPH model has successfully reduced the χ_(H)by 2.46%over the predicted 19 years.This approach is expected to enable grid operators to optimise transformer loading schedules to extend the R_(L)of these critical assets in a cost-effective manner.
文摘Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.
基金the National Natural Science Foundation of China(No.62065001)the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(No.202205AC160001)+1 种基金the Science and Technology Programs of Yunnan Provincial Science and Technology Department(No.202101BA070001-054)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(No.2019FH001(-066))。
文摘Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.
基金The National Natural Science Foundation of China under contract Nos 42176011 and 61931025the Fundamental Research Funds for the Central Universities of China under contract No.24CX03001A.
文摘Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface.
基金supported by the National Science and Technology Major Project of China(Grant No.2011ZX05014 and 2011ZX05008-005)
文摘The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
文摘The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.
基金Supported by the National 973 Program(No.973-1-12)
文摘In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strong LFM component has strong suppression effect on that of the weak LFM component. A method named as Recursive Filtering RAT (RFRAT) algorithm is proposed for solving this problem. By fully using of the Maximum Likelihood (ML) estimation value of the frequency modulation rate got by RAT, RFRAT can detect the noisy multi-LFM signals out step by step. The merit of this new method is validated by an illustrative example in low Signal-to-Noise-Ratio (SNR) condition.