期刊文献+
共找到4,964篇文章
< 1 2 249 >
每页显示 20 50 100
Integrating a Novel Particle Filtering and Model Predictive Health Management for Optimising Power Transformers Lifespan
1
作者 Ali Abdo Hongshun Liu +4 位作者 Yizhen Sui Luyao Liu Hongru Zhang Kun Yan Qingquan Li 《High Voltage》 2025年第5期1324-1335,共12页
Power transformers are vital components in electric grids;however,methods to optimise their loading to extend lifespan while accounting for insulation degradation remain underdeveloped.This research paper introduces a... Power transformers are vital components in electric grids;however,methods to optimise their loading to extend lifespan while accounting for insulation degradation remain underdeveloped.This research paper introduces a novel integrated data-driven framework that combines particle filtering and model predictive health(PF-MPH)model for the predictive health manage-ment of power transformers.Initially,the particle filter probabilistically estimates power transformers'remaining life(R_(L))using direct winding hotspot temperature(χ_(H))measurements.The obtained R_(L)will then be used to calculate the degree of poly-merisation(DP)level and assess the current insulation condition.After that,a comparative analysis between direct and model-basedχ_(H)measurement methods is performed to highlight the superior accuracy of direct measurements for predictive health management.Then,the MPH optimisation algorithm,which uses the R_(L)and DP forecasts from the PF method,derives an optimal trajectory over the transformer's R_(L)that balances the costs of increased loading against the benefits gained from prolonged insulation longevity.The findings show that the proposed PF-MPH model has successfully reduced the χ_(H)by 2.46%over the predicted 19 years.This approach is expected to enable grid operators to optimise transformer loading schedules to extend the R_(L)of these critical assets in a cost-effective manner. 展开更多
关键词 power transformers power transformersremaining particle filtering optimise their loading direct winding hotsp power transformersinitiallythe insulation degradation particle filter
在线阅读 下载PDF
Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform
2
作者 BALASUBRAMANIAN S NARUKA Mahaveer Singh TEWARI Gaurav 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期66-80,共15页
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met... Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising. 展开更多
关键词 electrocardiogram(ECG)signal denoising empirical wavelet transform(EWT) honey badge optimization(HBO) adaptive hybrid filter window function
原文传递
基于FRFT和自适应滤波技术的LFM信号处理方法
3
作者 魏宝君 夏恺 +2 位作者 刘健 张必成 王荣贞 《中国石油大学学报(自然科学版)》 北大核心 2025年第5期71-81,共11页
将分数阶傅里叶变换(FRFT)与基于相关特性的箕舌线变步长自适应滤波技术相结合,处理含噪声的线性调频(LFM)信号。结果表明,将时域信号在最优阶数下做分数阶傅里叶变换后,利用基于相关特性的箕舌线变步长自适应滤波算法在最佳分数阶傅里... 将分数阶傅里叶变换(FRFT)与基于相关特性的箕舌线变步长自适应滤波技术相结合,处理含噪声的线性调频(LFM)信号。结果表明,将时域信号在最优阶数下做分数阶傅里叶变换后,利用基于相关特性的箕舌线变步长自适应滤波算法在最佳分数阶傅里叶域中进行滤波处理,可将混杂在LFM信号中的大部分噪声信号滤掉,实现对有用信号的有效提取。在低信噪比情况下,与滑动平均处理、小波变换相比,自适应滤波技术滤波效果更好,更容易从高强度噪声中提取出微弱的目标信号,适用范围更广。当变换阶数为最优阶数时,信号误差收敛到极小值的速度最快,最终达到的极值最小,滤波处理的效果最好。LFM信号的调频斜率越大,对应的最优阶数越大,最优阶数下信号的均方误差增大。对存在强度差异的多分量LFM信号进行滤波时,可采用先提取强信号再依次提取弱信号的步骤逐级提取出不同分量的信号,这种逐级提取的方法可有效减少强分量信号对弱分量信号的干扰,优化了弱分量信号的提取性能。 展开更多
关键词 分数阶傅里叶变换 自适应滤波算法 线性调频信号 变步长
在线阅读 下载PDF
基于粒子滤波器和Transformer-BiLSTM的大坝边坡变形时变预测模型
4
作者 王赫显 陈波 +1 位作者 郭凌云 周程涛 《水电能源科学》 北大核心 2025年第10期139-143,149,共6页
为了精确预测大坝边坡的变形,提出了一种基于粒子滤波器与Transformer-BiLSTM(T-B)算法的时变预测模型,首先利用粒子滤波器对降雨量、水库水位和温度等环境参数进行去噪处理,提高数据质量,随后结合环境参数与空间特征,采用T-B算法对大... 为了精确预测大坝边坡的变形,提出了一种基于粒子滤波器与Transformer-BiLSTM(T-B)算法的时变预测模型,首先利用粒子滤波器对降雨量、水库水位和温度等环境参数进行去噪处理,提高数据质量,随后结合环境参数与空间特征,采用T-B算法对大坝边坡的时空变形进行建模与预测,进而以西南地区某大坝边坡工程为例,通过定性与定量方法验证了模型的预测性能,并分析了主要影响因素。结果表明,粒子滤波器有效增强了环境数据的特征提取能力;T-B模型能够准确捕捉边坡变形的时空分布特征;融合粒子滤波器和T-B算法的模型在预测不同测点的变形时精度很高,其中,误差指标(均方误差(M_(MSE))、均方根误差(R_(RMSE))、平均绝对误差(M_(MAE)))接近0,拟合度指标(决定系数R^(2)、相关系数)接近1;降雨量、水库水位和温度为主要影响因素,其重要性依次递减。所提模型能够为大坝安全监测提供高效可靠的预测手段。 展开更多
关键词 大坝边坡 变形预测 时变预测模型 transformer-BiLSTM算法 粒子滤波器 影响因素
原文传递
Undecimated Dual-Tree Complex Wavelet Transform and Fuzzy Clustering-Based Sonar Image Denoising Technique
5
作者 LIU Biao LIU Guangyu +3 位作者 FENG Wei WANG Shuai ZHOU Bao ZHAO Enming 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期998-1008,共11页
Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n... Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance. 展开更多
关键词 fuzzy clustering bilateral filtering undecimated dual-tree complex wavelet transform image denoising
原文传递
顾及多高程多密度Transformer的点云地面滤波
6
作者 路创军 魏博 +3 位作者 郝娇娇 王丽丽 李海燕 郑超 《地理空间信息》 2025年第10期68-72,83,共6页
地面滤波是处理ALS点云数据的基础步骤之一,Transformer机制为点云数据处理提供了新的解决方案,但现有方法大多通过堆砌Transformer提高地面滤波精度,未曾建立长距离点云特征依赖关系。为此,提出一种多层Point Transformer模型并将其应... 地面滤波是处理ALS点云数据的基础步骤之一,Transformer机制为点云数据处理提供了新的解决方案,但现有方法大多通过堆砌Transformer提高地面滤波精度,未曾建立长距离点云特征依赖关系。为此,提出一种多层Point Transformer模型并将其应用于大范围ALS点云地面滤波,该模型结合了Transformer、反向残差MLP和卷积的多重优势,能够实现点云场景多层位置信息的捕获和轻量化计算。首先,提出融合了多层位置信息的多高程多密度Transformer,该模块分别依据高程和密度对点云场景进行分层,选取高程层和密度层的邻域信息构成多层特征,并分层计算注意力,实现点云高程和密度特征融合。其次,提出一种点云上下文位置编码算法,以准确描述点云上下文依赖关系。最后,在特征维度较小的输入输出层放置Transformer块,以减少内存占用,实现模型轻量化。实验引入大范围ALS点云数据集OpenGF充分验证多层Point Transformer的综合性能,结果表明,多层Point Transformer能够满足大范围ALS点云地面滤波需求,与现有方法相比,取得了更先进的地面滤波精度,并降低了模型复杂度。 展开更多
关键词 点云地面滤波 Point transformer 多高程多密度 注意力计算 OpenGF
在线阅读 下载PDF
基于引导滤波和Transformer的双分支视网膜血管分割网络
7
作者 闫本聪 王迎美 《山东大学学报(理学版)》 北大核心 2025年第7期22-31,共10页
引入Transformer结构和UNet++网络,提出一个新的双分支视网膜血管分割网络,该网络中的双分支编码器可以更好地关联图像中的全局信息,使得整个网络在小数据集的训练中也有较好的效果。在此基础上,为了进一步解决UNet网络中下采样操作导... 引入Transformer结构和UNet++网络,提出一个新的双分支视网膜血管分割网络,该网络中的双分支编码器可以更好地关联图像中的全局信息,使得整个网络在小数据集的训练中也有较好的效果。在此基础上,为了进一步解决UNet网络中下采样操作导致的视网膜血管信息丢失问题,在输出层和网络第二层的特征图引入引导滤波,可以有效提高小血管分割精度。该网络使用DRIVE数据集(digital retinal images for vessel extraction)和CHASEDB1数据集(combined healthy and diabetic reti-nopathy database 1)进行实验,在精确度、灵敏度等参数上有较大的提升,并且血管分割图中正确分割出更多细小血管,总体表现出较好的效果。 展开更多
关键词 UNet++ transformER 引导滤波 视网膜血管分割
原文传递
A deep learning model for ocean surface latent heat flux based on transformer and data assimilation
8
作者 Yahui Liu Hengxiao Li Jichao Wang 《Acta Oceanologica Sinica》 2025年第5期115-130,共16页
Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer ... Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface. 展开更多
关键词 climate dynamics Deep Learning(DL) Data Assimilation(DA) transformER ensemble Kalman filter ocean surface latent heat flux
在线阅读 下载PDF
基于频域Swin Transformer的植物叶片病害识别研究
9
作者 陈藜韦 古丽娜孜·艾力木江 伊力亚尔·加尔木哈买提 《中国农机化学报》 北大核心 2025年第10期128-137,共10页
植物病虫害给农业生产带来严重威胁,需对其进行及时监控和预防。由于植物病虫害种类繁多且在初期病症相似,农业工作者极难区分。基于此,提出一种基于频域Swin Transformer的植物叶片病害识别方法。首先,利用改进的CutMix数据增强算法提... 植物病虫害给农业生产带来严重威胁,需对其进行及时监控和预防。由于植物病虫害种类繁多且在初期病症相似,农业工作者极难区分。基于此,提出一种基于频域Swin Transformer的植物叶片病害识别方法。首先,利用改进的CutMix数据增强算法提高模型的训练效率,使模型关注病害图像的重要部分,让模型学习到更多信息避免模型过拟合,提高模型的泛化性能。然后,利用高斯滤波和边缘检测降低病害识别中背景噪声对识别准确性的负面影响,突出叶片轮廓信息。最后,加入频域层来捕捉病害图像的局部特征。结果表明:提出的方法在番茄、水稻和棉花3个数据集上的准确率分别为98.59%、100%、99.58%,比改进前分别提高1.34%、0.12%和0.5%,检测速度分别提升2.54帧/s、4.04帧/s和9.97帧/s。 展开更多
关键词 植物叶片 病害识别 数据增强 频域Swin transformer 边缘检测 高斯滤波
在线阅读 下载PDF
基于NRBO-Transformer-BiLSTM的柔性薄壁轴承细粒度故障诊断
10
作者 郭明军 陈昕昀 +2 位作者 石淇 李鑫 赵学智 《现代制造工程》 北大核心 2025年第11期136-145,34,共11页
针对现有柔性薄壁轴承的细粒度故障识别及其现有诊断方法特征提取不足等问题,提出一种基于牛顿-拉夫逊优化(Newton-Raphson-Based Optimizer,NRBO)算法优化的Transformer编码层与双向长短期记忆(Bi-directional Long Short-Term Memory,... 针对现有柔性薄壁轴承的细粒度故障识别及其现有诊断方法特征提取不足等问题,提出一种基于牛顿-拉夫逊优化(Newton-Raphson-Based Optimizer,NRBO)算法优化的Transformer编码层与双向长短期记忆(Bi-directional Long Short-Term Memory,BiLSTM)神经网络解码层相结合的故障诊断方法。该方法首先使用时变滤波经验模态分解(Time-Varying Filter Empirical Mode Decomposition,TVFEMD)柔性薄壁轴承振动加速度信号,同时采用NRBO算法对其时变滤波带宽和B样条阶数等参数进行优化,依据互相关系数准则筛选主要本征模态分量(Intrinsic Mode Function,IMF),计算其时频域特征,结合振动加速度信号的时域、频域特征构建多域特征数据集,并按比例划分为训练集和测试集;其次将训练集输入模型,通过NRBO算法对模型初始学习率、BiLSTM神经网络的隐藏层节点数以及Transformer模型的正则化系数进行优化;通过测试集对优化模型进行测试,并与其他细粒度故障诊断模型对比。结果表明,所提方法准确率达99.60%,高于其他模型。该方法可为柔性薄壁轴承细粒度的智能诊断提供一种新的研究思路,对其他相关领域的智能化健康管理亦可提供有益借鉴。 展开更多
关键词 柔性薄壁轴承 故障诊断 牛顿-拉夫逊优化算法 双向长短期记忆网络 transformer模型 时变滤波经验模态分解
在线阅读 下载PDF
基于改进iTransformer的多维特征河流水质预测方法研究
11
作者 樊力震 董建刚 李俊俊 《现代电子技术》 北大核心 2025年第8期179-186,共8页
水质预测是水资源生态管理的重要组成部分。水质数据易受环境影响,随着时间、随机事件、自然条件变化等因素呈现出非平稳性和非线性的特性,使得水质时序依赖较为复杂,其规律难以捕捉。为更准确地提取水质时序规律,并使其具备一定的泛化... 水质预测是水资源生态管理的重要组成部分。水质数据易受环境影响,随着时间、随机事件、自然条件变化等因素呈现出非平稳性和非线性的特性,使得水质时序依赖较为复杂,其规律难以捕捉。为更准确地提取水质时序规律,并使其具备一定的泛化性,提出一种基于改进iTransformer的多维特征水质预测模型——GF-iTransformer。针对水质数据中的复杂噪声问题,引入一维高斯-拉普拉斯滤波器对水质时序数据进行降噪。为更好地挖掘水质数据中隐含的频域信息,加入频率增强通道注意力机制,利用基于离散余弦变换(DCT)的频率信息提取方法,从本质上避免了基于傅里叶变换(FT)造成的吉布斯现象,并相对减少了计算量,得到了更好的预测性能。在3个不同的公共数据集(ETTh1、ETTh2、ETTm2)和两个河流数据集(yihe、luohe)上进行验证,结果表明,相较于TimesNet、ETSformer、DLinear等6个现有主流时序预测模型,文中所提GF-iTransformer模型都展现出了较好的预测精度,证明了该模型的有效性。 展开更多
关键词 水质预测 多维特征 itransformer模型 高斯-拉普拉斯滤波器 注意力机制 离散余弦变换
在线阅读 下载PDF
联合双支路生成对抗网络与Transformer的全色与多光谱遥感图像融合
12
作者 姬云翔 康家银 马寒雁 《遥感学报》 北大核心 2025年第8期2641-2657,共17页
多光谱遥感图像具有能够反映丰富地物特征的光谱信息,但其空间分辨率较低,纹理信息相对不足。相反地,全色遥感图像的空间分辨率高,纹理信息丰富,但缺乏能够反映地物特征的丰富的光谱信息。通过图像融合技术可以将二者进行集成,以达到各... 多光谱遥感图像具有能够反映丰富地物特征的光谱信息,但其空间分辨率较低,纹理信息相对不足。相反地,全色遥感图像的空间分辨率高,纹理信息丰富,但缺乏能够反映地物特征的丰富的光谱信息。通过图像融合技术可以将二者进行集成,以达到各自的优势互补,从而使得融合所得的图像能够更好地满足下游任务的需要。为此,本文提出了一种无监督的基于双支路生成对抗网络与Transformer的多光谱与全色遥感图像融合方法。具体地,首先采用引导滤波将源图像(源多光谱和全色遥感图像)分解为呈现图像主体信息的基础层分量与体现图像纹理、细节信息的细节层分量;然后,将分解得到的多光谱和全色遥感图像的基础层分量进行级联,将二者分解得到的细节层分量也进行级联;其次,将级联后的基础层分量和细节层分量分别输入至双支路生成器的基础层支路和细节层支路中;接着,针对基础层分量与细节层分量各自不同的特性,分别采用Transformer网络和卷积神经网络进行特征信息提取,以便从基础层分支和细节层分支中分别提取得到全局光谱信息和局部纹理信息;最后,通过生成器和双判别器(基础层判别器和细节层判别器)之间不断地对抗训练,得到同时具有丰富光谱信息与高空间分辨率的融合图像。通过在公开的数据集上与多个有代表性的方法进行定性与定量的对比实验表明,本文所提方法具有一定优越性,即在主观视觉效果和客观评价指标上均取得了较好的融合效果。 展开更多
关键词 遥感图像融合 引导滤波 卷积神经网络 生成对抗网络 transformer网络 基础层 细节层 全色 多光谱
原文传递
基于DirectShow设计视频加密Transform Filter 被引量:5
13
作者 姚晔 徐正全 李伟 《计算机工程与应用》 CSCD 北大核心 2005年第18期91-93,共3页
实现了基于DirectShow技术开发视频加密TransformFilter。首先介绍了视频加密的原理和方案,分析了Di-rectShow的体系结构,然后研究了基于DirectShow技术如何实现视频加密TransformFilter,并给出了试验结果和结论。试验结果表明该Filter... 实现了基于DirectShow技术开发视频加密TransformFilter。首先介绍了视频加密的原理和方案,分析了Di-rectShow的体系结构,然后研究了基于DirectShow技术如何实现视频加密TransformFilter,并给出了试验结果和结论。试验结果表明该Filter可以对实时视频进行加密,加密速度快,效果好。 展开更多
关键词 视频加密 DIRECTSHOW transform filter
在线阅读 下载PDF
Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform 被引量:7
14
作者 谭玉阳 何川 +1 位作者 王艳冬 赵忠 《Applied Geophysics》 SCIE CSCD 2013年第3期279-294,358,共17页
The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequen... The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave. 展开更多
关键词 Ground roll S transform spectral matrix polarization attributes polarization filter
在线阅读 下载PDF
基于FrFT和RVM的变压器局部放电模式识别 被引量:2
15
作者 杨新志 李利华 +2 位作者 陈锋 赵国汉 雷秉惠 《广东电力》 北大核心 2024年第6期95-103,共9页
快速准确识别局部放电类型对于保证变压器安全稳定运行具有重要意义。针对局部放电信号模式识别中面临的最优特征参数提取和分类器设计难题,提出一种基于分数阶傅里叶变换(fractional Fourier transform,FrFT)和相关向量机(relevance ve... 快速准确识别局部放电类型对于保证变压器安全稳定运行具有重要意义。针对局部放电信号模式识别中面临的最优特征参数提取和分类器设计难题,提出一种基于分数阶傅里叶变换(fractional Fourier transform,FrFT)和相关向量机(relevance vector machine,RVM)的局部放电模式识别方法。首先将FrFT引入局部放电信号分析领域,利用FrFT将局部放电信号转换至分数域并对其进行多尺度分析,在扩充信息提取维度的同时,提取可反映不同局部放电信号波形差异的14维特征构成特征向量;然后将特征向量作为输入,建立RVM模型进行最优特征选择和分类判决函数的联合优化,从而实现对不同局部放电信号的分类识别。建立电晕放电、沿面放电和气隙放电试验模型并采集局部放电超声信号开展试验,结果表明所提方法对于每种局部放电信号均能获得较高的识别精度,平均正确识别率相对于常规支持向量机(support vector machine,SVM)分类方法提升超过2.7%。 展开更多
关键词 局部放电 模式识别 特征提取 特征选择 分数阶傅里叶变换
在线阅读 下载PDF
基于FrFT-FH架构LPD通信波形设计与性能分析
16
作者 宁晓燕 杨逸飞 +1 位作者 郭凯丰 王震铎 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2857-2866,共10页
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr... 针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。 展开更多
关键词 多域隐蔽 低检测概率 分数阶傅里叶变换跳频 时宽分割和重组
在线阅读 下载PDF
Coupling denoising algorithm based on discrete wavelet transform and modified median filter for medical image 被引量:29
17
作者 CHEN Bing-quan CUI Jin-ge +2 位作者 XU Qing SHU Ting LIU Hong-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期120-131,共12页
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi... In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition. 展开更多
关键词 medical image image denoising discrete wavelet transform modified median filter coupling denoising
在线阅读 下载PDF
Unscented Transformation Based Robust Kalman Filter and Its Applications in Fermentation Process 被引量:13
18
作者 王建林 冯絮影 +1 位作者 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期412-418,共7页
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele... State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations. 展开更多
关键词 robust Kalman filter unscented transformation fermentation process nonlinear system
在线阅读 下载PDF
Comparison of Nonlinear Local Lyapunov Vectors with Bred Vectors, Random Perturbations and Ensemble Transform Kalman Filter Strategies in a Barotropic Model 被引量:3
19
作者 Jie FENG Ruiqiang DING +1 位作者 Jianping LI Deqiang LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第9期1036-1046,共11页
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ... The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme. 展开更多
关键词 ensemble forecasting bred vector nonlinear local Lyapunov vector ensemble transform Kalman filter
在线阅读 下载PDF
RECURSIVE FILTERING RADON-AMBIGUITY TRANSFORM ALGORITHM FOR DETECTING MULTI-LFM SIGNALS 被引量:7
20
作者 Li Yingxiang Xiao Xianci (Dept. of E. E., University of Electronic Science & Technology of China, Chengdu 610054) 《Journal of Electronics(China)》 2003年第3期161-166,共6页
In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strong LFM component has strong suppression effect on that of the weak LFM component. A method named as Recursive Filtering RAT (RFRAT) algorithm i... In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strong LFM component has strong suppression effect on that of the weak LFM component. A method named as Recursive Filtering RAT (RFRAT) algorithm is proposed for solving this problem. By fully using of the Maximum Likelihood (ML) estimation value of the frequency modulation rate got by RAT, RFRAT can detect the noisy multi-LFM signals out step by step. The merit of this new method is validated by an illustrative example in low Signal-to-Noise-Ratio (SNR) condition. 展开更多
关键词 Multi-LFM signal Radon-ambiguity transform Adaptive dechirp filtering
在线阅读 下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部