Two-dimensional(2D)materials have gained considerable attention in chemical sensing owing to their naturally high surface-to-volume ratio.However,the poor response time and incomplete recovery re-strict their applicat...Two-dimensional(2D)materials have gained considerable attention in chemical sensing owing to their naturally high surface-to-volume ratio.However,the poor response time and incomplete recovery re-strict their application in practical,high performance gas sensors.In this work,we fabricated air-stable ReS_(2)/GaSe heterostructure-based NO_(2)gas sensors with excellent gas sensing response,recovery,selectiv-ity and a low limit of detection(LOD)toward nitrogen dioxide(NO_(2)).The ReS_(2)/GaSe heterostructure was prepared via mechanical exfoliation and an all-dry transfer method.Before the sensing measurements,temperature-dependant transport measurements were carried out.The Schottky Barrier Height(SBH)of the ReS_(2)/GaSe heterostructure was calculated and the corresponding transport mechanisms were dis-cussed.The fabricated gas sensors showed a significant response enhancement with full reversibility to-ward ppm-level NO_(2)(response of∼17%at 3 ppm,a LOD of∼556 ppb)at an operating temperature of(33°C).In particular,the total response and recovery time of the ReS_(2)/GaSe was revealed to be less than 4 min(∼38 s and∼174 s,respectively)for the 250 ppm concentration,which is one of the best response and recovery time toward ppm-level NO_(2).The excellent sensing performances and recovery characteris-tics of the ReS_(2)/GaSe structure are attributed to its efficient charge separation,unique interlayer coupling and desirable band alignments.This atomically thin,ultrasensitive gas sensor that operates at room tem-perature is a strong technological contender to conventional metal oxide gas sensors,which often require elevated temperatures.展开更多
在英语语言学界,存在着忽视Transferred Ep ithet和Hypallage的真实内涵,把二者混淆为同种修辞格即“移就”的现象。通过对Transferred Ep ithet和Hypallage的生成原因、表现形式、功能等三方面的分析和介绍,对二者进行了界定,以期引起...在英语语言学界,存在着忽视Transferred Ep ithet和Hypallage的真实内涵,把二者混淆为同种修辞格即“移就”的现象。通过对Transferred Ep ithet和Hypallage的生成原因、表现形式、功能等三方面的分析和介绍,对二者进行了界定,以期引起对此问题的关注及研究。展开更多
Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were opt...Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.展开更多
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th...Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.展开更多
The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The e...The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.展开更多
Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures co...Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.展开更多
The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD)...The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.展开更多
Chemical vapor deposition(CVD)-grown graphene on copper foils is subject to the Cu substrate, which affects the spatial distribution of strain and doping, thus influencing the electronic properties of graphene. Howeve...Chemical vapor deposition(CVD)-grown graphene on copper foils is subject to the Cu substrate, which affects the spatial distribution of strain and doping, thus influencing the electronic properties of graphene. However, plenty of electronic devices based on CVD-grown graphene require transfer process and the distribution of doping and strain in CVD-grown graphene transferred onto the insulating substrates remains elusive.展开更多
Stable and axi-symmetrical DC high-intensity transferred arcs with a coaxial water-cooled constrictor tube have been used to study the arc characteristics for many years. All the previous modeling studies concerning t...Stable and axi-symmetrical DC high-intensity transferred arcs with a coaxial water-cooled constrictor tube have been used to study the arc characteristics for many years. All the previous modeling studies concerning the high-intensity transferred arcs were restricted to the near-anode region. Modeling results are presented in this paper concerning the characteristics of the whole high-intensity transferred arc, referring to a recent experiment. It is shown that the computed flow and temperature fields for different flow rates of the working gas are overall similar, but a fully developed flow regime can only be achieved in the water-cooled constrictor tube at low working-gas flow rates. The predicted radial profiles of plasma temperature at the cross section near the constrictor-tube exit compare favorably with available experimental data, but corresponding comparison about the plasma axial-velocity profiles shows appreciable difference, revealing that there may exist considerable errors in the plasma velocity measurements using a sweeping Pitot tube.展开更多
Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated usi...Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.展开更多
Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of ...Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. To characterize the plasma discharge, a temperature diagnostic is realized by means of optical emission spectroscopy (OES). To typify the morphological structure of the wastes samples~ scan- ning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were applied before and after the plasma treatment.展开更多
A numerical simulation is conducted to investigate arc-anode attachment behavior, especially the formation mechanism of the constricted arc attachment mode for the water-cooled anode of wall-stabilized transferred arg...A numerical simulation is conducted to investigate arc-anode attachment behavior, especially the formation mechanism of the constricted arc attachment mode for the water-cooled anode of wall-stabilized transferred argon arcs. Argon molecular ions and the corresponding kinetic processes are included to the finite-rate chemistry model in order to capture the chemical nonequilibrium characteristics of the arc near the anode region. Modeling results show that constricted and diffusive arc–anode attachments can be self-consistently obtained at different arc currents while keeping other parameters unchanged. The dominant kinetic processes contributing to ionization and recombination in the arc center and fringes are presented. The results show that in arc fringes and the arc attachment region, molecular ion recombination plays an important role which leads to the rapid loss of electrons. The radial evolution of the production, loss and transport processes of electrons is further analyzed. It is found that for the constricted arc attachment mode, both the recombination and convection transport caused by the anode jet result in the loss of electrons at the arc fringes, which leads to the shrinkage of the arc column at the anode. The formation of the anode jet is due to the combined action of radial and axial Lorentz forces in the anode region.展开更多
The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a...The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a pinon-roller wear testing machine, at constant sliding distance of 1 kin. Mathematical models were developed to estimate wear rate incorporating with rotational speed, applied load and roller hardness using statistical tools such as design of experiments, regression analysis and analysis of variance. It is found that the wear resistance of the PTA hardfaced stainless steel surface is better than that of the carbon steel substrate.展开更多
Radiologic imaging is a diagnostic tool that greatly affects patient outcomes,[1]and with the recent development of imaging technology,advanced imaging tests such as computed tomography(CT)have gained widespread acces...Radiologic imaging is a diagnostic tool that greatly affects patient outcomes,[1]and with the recent development of imaging technology,advanced imaging tests such as computed tomography(CT)have gained widespread accessibility in hospitals.In particular,CT is essential in the evaluation of patients in low-level emergency departments(EDs)because of its ability to answer clinical questions accurately and quickly.[2]展开更多
The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc ...The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace(TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K(200 ℃) melt temperature and noise levels decreased by ~10 d B compared to a normal arc.Hydrogen plasma offered 100 K(100 ℃) higher melt temperature with ~5 d B higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)(No.2018R1A6A1A03025708)supported by the Nano-Material Technology Development Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science,ICT and Future Planning(No.2009-0082580).
文摘Two-dimensional(2D)materials have gained considerable attention in chemical sensing owing to their naturally high surface-to-volume ratio.However,the poor response time and incomplete recovery re-strict their application in practical,high performance gas sensors.In this work,we fabricated air-stable ReS_(2)/GaSe heterostructure-based NO_(2)gas sensors with excellent gas sensing response,recovery,selectiv-ity and a low limit of detection(LOD)toward nitrogen dioxide(NO_(2)).The ReS_(2)/GaSe heterostructure was prepared via mechanical exfoliation and an all-dry transfer method.Before the sensing measurements,temperature-dependant transport measurements were carried out.The Schottky Barrier Height(SBH)of the ReS_(2)/GaSe heterostructure was calculated and the corresponding transport mechanisms were dis-cussed.The fabricated gas sensors showed a significant response enhancement with full reversibility to-ward ppm-level NO_(2)(response of∼17%at 3 ppm,a LOD of∼556 ppb)at an operating temperature of(33°C).In particular,the total response and recovery time of the ReS_(2)/GaSe was revealed to be less than 4 min(∼38 s and∼174 s,respectively)for the 250 ppm concentration,which is one of the best response and recovery time toward ppm-level NO_(2).The excellent sensing performances and recovery characteris-tics of the ReS_(2)/GaSe structure are attributed to its efficient charge separation,unique interlayer coupling and desirable band alignments.This atomically thin,ultrasensitive gas sensor that operates at room tem-perature is a strong technological contender to conventional metal oxide gas sensors,which often require elevated temperatures.
文摘在英语语言学界,存在着忽视Transferred Ep ithet和Hypallage的真实内涵,把二者混淆为同种修辞格即“移就”的现象。通过对Transferred Ep ithet和Hypallage的生成原因、表现形式、功能等三方面的分析和介绍,对二者进行了界定,以期引起对此问题的关注及研究。
基金Project (2016YFB0300502) supported by the National Key Research and Development Program of ChinaProjects (51601129,51775386) supported by the National Natural Science Foundation of China+2 种基金Project (16PJ1410000) supported by Shanghai Pujiang Program,ChinaProject (16ZR1438700) supported by the Natural Science Foundation of Shanghai,ChinaProject (TPL1706) supported by Traction Power State Key Laboratory of Southwest Jiaotong University,China
文摘Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.
基金This work is financially supported by the Scientific Research Foundation for Young Teachers of Anhui Province, China (No. 2006jql082).
文摘Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.
基金the financial support to carry out this investigation through sponsored research and development project No.2003/20/36/1-BRNS.
文摘The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.
基金Funded by the Ocean Public Science and Technology Research Fund Projects of China(No.201405013-3)the National Natural Science Foundation of China(No.51609133)+1 种基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Maritime University(No.20130448)
文摘Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.
文摘The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.
基金the National Natural Science Foundation of China(Nos.51772043,51872039,52021001 and 51802036)Shenzhen Science and Technology Program(No.(2021)105)。
文摘Chemical vapor deposition(CVD)-grown graphene on copper foils is subject to the Cu substrate, which affects the spatial distribution of strain and doping, thus influencing the electronic properties of graphene. However, plenty of electronic devices based on CVD-grown graphene require transfer process and the distribution of doping and strain in CVD-grown graphene transferred onto the insulating substrates remains elusive.
基金The project supported by National Natural Science Foundation of China (Nos. 50336010, 10405015, 10575127) and the ChinesePostdoctoral Science Foundation (No. 20040350044)
文摘Stable and axi-symmetrical DC high-intensity transferred arcs with a coaxial water-cooled constrictor tube have been used to study the arc characteristics for many years. All the previous modeling studies concerning the high-intensity transferred arcs were restricted to the near-anode region. Modeling results are presented in this paper concerning the characteristics of the whole high-intensity transferred arc, referring to a recent experiment. It is shown that the computed flow and temperature fields for different flow rates of the working gas are overall similar, but a fully developed flow regime can only be achieved in the water-cooled constrictor tube at low working-gas flow rates. The predicted radial profiles of plasma temperature at the cross section near the constrictor-tube exit compare favorably with available experimental data, but corresponding comparison about the plasma axial-velocity profiles shows appreciable difference, revealing that there may exist considerable errors in the plasma velocity measurements using a sweeping Pitot tube.
基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Jian Qiao University(No.SJQ19012)。
文摘Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.
文摘Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. To characterize the plasma discharge, a temperature diagnostic is realized by means of optical emission spectroscopy (OES). To typify the morphological structure of the wastes samples~ scan- ning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were applied before and after the plasma treatment.
基金supported by National Natural Science Foundation of China (Nos. 11735004, 11575019, 11702021)the National Postdoctoral Program for Innovative Talents (BX20180029)
文摘A numerical simulation is conducted to investigate arc-anode attachment behavior, especially the formation mechanism of the constricted arc attachment mode for the water-cooled anode of wall-stabilized transferred argon arcs. Argon molecular ions and the corresponding kinetic processes are included to the finite-rate chemistry model in order to capture the chemical nonequilibrium characteristics of the arc near the anode region. Modeling results show that constricted and diffusive arc–anode attachments can be self-consistently obtained at different arc currents while keeping other parameters unchanged. The dominant kinetic processes contributing to ionization and recombination in the arc center and fringes are presented. The results show that in arc fringes and the arc attachment region, molecular ion recombination plays an important role which leads to the rapid loss of electrons. The radial evolution of the production, loss and transport processes of electrons is further analyzed. It is found that for the constricted arc attachment mode, both the recombination and convection transport caused by the anode jet result in the loss of electrons at the arc fringes, which leads to the shrinkage of the arc column at the anode. The formation of the anode jet is due to the combined action of radial and axial Lorentz forces in the anode region.
文摘The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a pinon-roller wear testing machine, at constant sliding distance of 1 kin. Mathematical models were developed to estimate wear rate incorporating with rotational speed, applied load and roller hardness using statistical tools such as design of experiments, regression analysis and analysis of variance. It is found that the wear resistance of the PTA hardfaced stainless steel surface is better than that of the carbon steel substrate.
文摘Radiologic imaging is a diagnostic tool that greatly affects patient outcomes,[1]and with the recent development of imaging technology,advanced imaging tests such as computed tomography(CT)have gained widespread accessibility in hospitals.In particular,CT is essential in the evaluation of patients in low-level emergency departments(EDs)because of its ability to answer clinical questions accurately and quickly.[2]
文摘The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace(TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K(200 ℃) melt temperature and noise levels decreased by ~10 d B compared to a normal arc.Hydrogen plasma offered 100 K(100 ℃) higher melt temperature with ~5 d B higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.