A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influen...A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influenced by matric suction.This approach includes a Modified Load Transfer Model(MLTM)that can predict the nonlinear relationships between the shear stress and pile-soil relative displacement along the pile shaft,and between the pile base resistance and base settlement.The proposed model is also extended for pile groups to incorporate the interaction effects between individual piles.The analytical approach is validated through a comparative analysis with the measurements from two single pile tests and one pile group test.In addition,a finite element analysis using 3D modeling is carried out to investigate the behavior of pile groups in various unsaturated conditions.This is accomplished with a user-defined subroutine that is written and implemented in ABAQUS to simulate the nonlinear mechanical behavior of unsaturated soils.The predictions derived from the proposed analytical and numerical methods compare well with the measurements of a published experimental study.The proposed methodologies have the potential to be applied in geotechnical engineering practice for the rational design of single piles and pile groups in unsaturated soils.展开更多
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis...The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.展开更多
When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicator...When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
The wheel loads of heavy trucks are the major source of pavement damage,given the repeated loadings imposed by them due to transient events and surface irregularities.While related studies focus on steady-state contex...The wheel loads of heavy trucks are the major source of pavement damage,given the repeated loadings imposed by them due to transient events and surface irregularities.While related studies focus on steady-state context regarding simplified vehicle’s parameters and ideal pavement conditions,this paper aims to analyze the vertical load applied to the pavement by considering cornering maneuver as a transient event,on a battery electric vehicle truck.In this concern,measurements were performed on a rigid truck,with two steering front axles,in a closed course proving ground.The relationship has been presented between vehicle’s speed,lateral acceleration and transferred vertical load for a given curve radius of 85.6 m and 3.7°of transversal slope.The measurements results indicated that for every 10 km/h increasing on the vehicle’s speed,additional 110 kgf will be transferred to the pavement on the outer side of the cornering radius.This value itself could not be considered high,but it will be also added to the static load,or overload in some truck applications.展开更多
In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the a...In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope,transmission electron microscopy and in situ synchrotron X-ray diffraction.It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of~640 MPa,significantly exceeding that of the conventional single-phaseβ-type Ti alloys.Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite,load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred,allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite.Meanwhile,the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix,further strengthening the present nanocomposite.These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations,providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.展开更多
The static drill rooted nodular pile is a new type of pile foundation consisting of precast nodular pile and the surrounding cemented soil.This composite pile has a relatively high bearing capacity and the mud polluti...The static drill rooted nodular pile is a new type of pile foundation consisting of precast nodular pile and the surrounding cemented soil.This composite pile has a relatively high bearing capacity and the mud pollution will be largely reduced during the construction process by using this type of pile.In order to investigate the bearing capacity and load transfer mechanism of this pile,a group of experiments were conducted to provide a comparison between this new pile and the bored pile.The axial force of a precast nodular pile was also measured by the strain gauges installed on the pile to analyze the distribution of the axial force of the nodular pile and the skin friction supported by the surrounding soil,then 3D models were built by using the ABAQUS finite element program to investigate the load transfer mechanism of this composite pile in detail.By combining the results of field tests and the finite element method,the outcome showed that the bearing capacity of a static drill rooted nodular pile is higher than the bored pile,and that this composite pile will form a double stress dispersion system which will not only confirm the strength of the pile,but also make the skin friction to be fully mobilized.The settlement of this composite pile is mainly controlled by the precast nodular pile;meanwhile,the nodular pile and the surrounding cemented soil can be considered as deformation compatibility during the loading process.The nodes on the nodular pile play an important role during the load transfer process,the shear strength of the interface between the cemented soil and the soil of the static drill rooted pile is larger than that of the bored pile.展开更多
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s...The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.展开更多
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and t...The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top.展开更多
The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolt...The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.展开更多
Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scal...Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
For the low price of coal and ineffective environmental management in mining area, China is in the dilemma of the increasing coal demand and the serious environmental issues in mining area. The more coal that is expor...For the low price of coal and ineffective environmental management in mining area, China is in the dilemma of the increasing coal demand and the serious environmental issues in mining area. The more coal that is exported from a region, the more heavily it suffers from the environmental impacts of coal export. In this paper, the temporal and spatial process of exporting coal from Shanxi to other provinces of China is traced between 1975 and 2005. The coal net export of Shanxi increased to 370.69 million tonnes in 2005, representing an average annual growth rate of 7.5% from 1975 to 2005. With the increase of the amount of coal export from Shanxi, the Environmental Loads Transfer (ELT) that import provinces input to mining areas of Shanxi are rising. Effective means of internalizing the environmental externality of ELT lie in: 1) setting up a coal sustainable development fund to restore environment of coal mining area; 2) enforcing environment tax, financial transfer payment and transferring advantage technology of pollution reduction to coal export area; and 3) reducing coal regional flow by reducing coal demand from power generation and heating and other industries.展开更多
The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pa...The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pattern and design of an electromechanically adjusted lever that multiplies the applied braking force depending on the inputs given by the sensors to reduce the stopping distance of the vehicle.It is carried out using two main parts of the two-wheeler vehicle:thefirst part deals with the detection of load acting on the vehicle and identifying the required braking force to be applied,and the second part deals with the micro-controller which activates the stepper motor for varying the mechanical leverage ratio from various loads on the vehicle using two actively movable wedges.The electromechanically operated variable braking force system is developed to actuate the braking system based on the load on the motorcycle.The MATLAB simulation and experimental work are carried out for various loading(driver and pillion)conditions on a two-wheeler.The results indicate that the proposed electronically operated braking system is more effective than the conventional braking system for various loads and vehicle speeds.Specifically,the stopping distance of the vehicle is decreased significantly by about 4.9%between the con-ventional braking system and the simulated proposed system.Further,the experi-mental results show that the stopping distance is condensed by about 4.1%.The validation between simulated and experimental results revealed a great deal with the least error percentage of about 0.8%.展开更多
High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar ...High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, th...On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.展开更多
Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embank...Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.展开更多
基金financially supported by NSERC,CanadaDiscovery Grant 2020(Grant No.5808).
文摘A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influenced by matric suction.This approach includes a Modified Load Transfer Model(MLTM)that can predict the nonlinear relationships between the shear stress and pile-soil relative displacement along the pile shaft,and between the pile base resistance and base settlement.The proposed model is also extended for pile groups to incorporate the interaction effects between individual piles.The analytical approach is validated through a comparative analysis with the measurements from two single pile tests and one pile group test.In addition,a finite element analysis using 3D modeling is carried out to investigate the behavior of pile groups in various unsaturated conditions.This is accomplished with a user-defined subroutine that is written and implemented in ABAQUS to simulate the nonlinear mechanical behavior of unsaturated soils.The predictions derived from the proposed analytical and numerical methods compare well with the measurements of a published experimental study.The proposed methodologies have the potential to be applied in geotechnical engineering practice for the rational design of single piles and pile groups in unsaturated soils.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金financially supported by the National Natural Science Foundation of China(Nos.51878577 and 52378463)the Natural Science Foundation of Shandong Provincial,China(No.ZR2022ME042)the School-Enterprise Cooperation Program of China Railway 14th Bureau Group Co.(QTHT-HGLCHSD-00052)。
文摘The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.
基金the Incubation Project of State Grid Jiangsu Corporation of China“Construction and Application of Intelligent Load Transferring Platform for Active Distribution Networks”(JF2023031).
文摘When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
文摘The wheel loads of heavy trucks are the major source of pavement damage,given the repeated loadings imposed by them due to transient events and surface irregularities.While related studies focus on steady-state context regarding simplified vehicle’s parameters and ideal pavement conditions,this paper aims to analyze the vertical load applied to the pavement by considering cornering maneuver as a transient event,on a battery electric vehicle truck.In this concern,measurements were performed on a rigid truck,with two steering front axles,in a closed course proving ground.The relationship has been presented between vehicle’s speed,lateral acceleration and transferred vertical load for a given curve radius of 85.6 m and 3.7°of transversal slope.The measurements results indicated that for every 10 km/h increasing on the vehicle’s speed,additional 110 kgf will be transferred to the pavement on the outer side of the cornering radius.This value itself could not be considered high,but it will be also added to the static load,or overload in some truck applications.
基金supported by the National Natural Science Foundation of China(Nos.51771082,51971009 and 52175410)Zhenjiang Science and Technology Program(No.GY2020001)+2 种基金the Six Talent Peaks Project in Jiangsu Province(No.2019-XCL-113)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20200101)Advanced Photon Source,a US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope,transmission electron microscopy and in situ synchrotron X-ray diffraction.It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of~640 MPa,significantly exceeding that of the conventional single-phaseβ-type Ti alloys.Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite,load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred,allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite.Meanwhile,the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix,further strengthening the present nanocomposite.These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations,providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.
文摘The static drill rooted nodular pile is a new type of pile foundation consisting of precast nodular pile and the surrounding cemented soil.This composite pile has a relatively high bearing capacity and the mud pollution will be largely reduced during the construction process by using this type of pile.In order to investigate the bearing capacity and load transfer mechanism of this pile,a group of experiments were conducted to provide a comparison between this new pile and the bored pile.The axial force of a precast nodular pile was also measured by the strain gauges installed on the pile to analyze the distribution of the axial force of the nodular pile and the skin friction supported by the surrounding soil,then 3D models were built by using the ABAQUS finite element program to investigate the load transfer mechanism of this composite pile in detail.By combining the results of field tests and the finite element method,the outcome showed that the bearing capacity of a static drill rooted nodular pile is higher than the bored pile,and that this composite pile will form a double stress dispersion system which will not only confirm the strength of the pile,but also make the skin friction to be fully mobilized.The settlement of this composite pile is mainly controlled by the precast nodular pile;meanwhile,the nodular pile and the surrounding cemented soil can be considered as deformation compatibility during the loading process.The nodes on the nodular pile play an important role during the load transfer process,the shear strength of the interface between the cemented soil and the soil of the static drill rooted pile is larger than that of the bored pile.
文摘The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.
基金Projects(50378097, 50678177) supported by the National Natural Science Foundation of China
文摘The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top.
文摘The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.
基金Project(50621062) supported by the National Natural Science Foundation of China
文摘Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金Knowledge Innovation Project of Institute of Geographic Sciences and Natural Resources Research, CAS, No.O9V90143ZZ
文摘For the low price of coal and ineffective environmental management in mining area, China is in the dilemma of the increasing coal demand and the serious environmental issues in mining area. The more coal that is exported from a region, the more heavily it suffers from the environmental impacts of coal export. In this paper, the temporal and spatial process of exporting coal from Shanxi to other provinces of China is traced between 1975 and 2005. The coal net export of Shanxi increased to 370.69 million tonnes in 2005, representing an average annual growth rate of 7.5% from 1975 to 2005. With the increase of the amount of coal export from Shanxi, the Environmental Loads Transfer (ELT) that import provinces input to mining areas of Shanxi are rising. Effective means of internalizing the environmental externality of ELT lie in: 1) setting up a coal sustainable development fund to restore environment of coal mining area; 2) enforcing environment tax, financial transfer payment and transferring advantage technology of pollution reduction to coal export area; and 3) reducing coal regional flow by reducing coal demand from power generation and heating and other industries.
文摘The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pattern and design of an electromechanically adjusted lever that multiplies the applied braking force depending on the inputs given by the sensors to reduce the stopping distance of the vehicle.It is carried out using two main parts of the two-wheeler vehicle:thefirst part deals with the detection of load acting on the vehicle and identifying the required braking force to be applied,and the second part deals with the micro-controller which activates the stepper motor for varying the mechanical leverage ratio from various loads on the vehicle using two actively movable wedges.The electromechanically operated variable braking force system is developed to actuate the braking system based on the load on the motorcycle.The MATLAB simulation and experimental work are carried out for various loading(driver and pillion)conditions on a two-wheeler.The results indicate that the proposed electronically operated braking system is more effective than the conventional braking system for various loads and vehicle speeds.Specifically,the stopping distance of the vehicle is decreased significantly by about 4.9%between the con-ventional braking system and the simulated proposed system.Further,the experi-mental results show that the stopping distance is condensed by about 4.1%.The validation between simulated and experimental results revealed a great deal with the least error percentage of about 0.8%.
文摘High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
基金Project(05-0686) supported by the Program for New Century Excellent Talents in UniversityProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.
基金funded by the Science and Technology Department of Railway Ministry (Grant No. Z2012061)
文摘Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.