期刊文献+
共找到147,109篇文章
< 1 2 250 >
每页显示 20 50 100
Momentum transfer collision frequencies between electrons and neutrals of astrophysical interest
1
作者 YuTian Cao Jun Cui +4 位作者 RuiQi Fu WenJun Liang XiaoShu Wu TieLong Zhang HaoYu Lu 《Earth and Planetary Physics》 2026年第1期82-91,共10页
Theoretical calculations serve as an effective method for determining plasma temperatures within planetary atmospheres.To simulate plasma temperature,a comprehensive implementation of the energy equation is used,which... Theoretical calculations serve as an effective method for determining plasma temperatures within planetary atmospheres.To simulate plasma temperature,a comprehensive implementation of the energy equation is used,which is governed by five terms:conductivity,heating,cooling,adiabatic expansion,and advection.The derivations mentioned are strongly dependent on the collision cross section between electrons and other particles(e.g.,neutrals,ions).It is notable that the momentum transfer cross sections between electrons and neutrals have been updated in recent decades.However,the widely used momentum average collision cross sections between electrons and neutrals,derived from the momentum transfer cross sections,are collected in studies dating back nearly half a century.Therefore,it becomes imperative to revise the momentum average collision cross sections relevant to astrophysical contexts,based on the latest studies.In this study,we summarize the momentum average collision cross sections of 13 species common in planetary atmospheres:H,H_(2),He,O,CH_(4),H_(2)O,CO,N_(2),O_(2),Ar,CO_(2),N_(2)O,and NO_(2).All results are derived from the latest studies concerning the electron-neutral collision cross section and are compared with previous studies.Furthermore,we present a comparison of the derived total electron-neutral collision frequency at Mars between this study and previous studies.Prominent differences in the total electron-neutral collision frequency between this and prior studies support the significance of updating the momentum average collision cross section between electrons and neutrals in studying the planetary atmospheres. 展开更多
关键词 momentum transfer collision planetary atmosphere electron-neutral collision frequency
在线阅读 下载PDF
Pulsed Dynamic Water Electrolysis:Mass Transfer Enhancement,Microenvironment Regulation,and Hydrogen Production Optimization
2
作者 Xuewei Zhang Wei Zhou +7 位作者 Xiaoxiao Meng Yuming Huang Yang Yu Haiqian Zhao Lijie Wang Fei Sun Jihui Gao Guangbo Zhao 《Nano-Micro Letters》 2026年第3期807-859,共53页
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust... Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed. 展开更多
关键词 Pulsed dynamic electrolysis Water electrolysis Energy and mass transfer MICROENVIRONMENT System stability
在线阅读 下载PDF
Ultra-fast and high-responsivity self-powered vis-NIR photodetector via surface charge transfer doping in MoTe_(2)/ReS_(2)heterostructures
3
作者 Haozhe Ruan Yongkang Liu +5 位作者 Jianyu Wang Linjiang Xie Yixuan Wang Mengting Dong Zhangting Wu Liang Zheng 《Journal of Semiconductors》 2026年第1期99-106,共8页
The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising c... The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices. 展开更多
关键词 MoTe_(2)/ReS_(2)heterostructure broadband photodetector surface charge transfer doping P-I-N
在线阅读 下载PDF
Chemical exchange saturation transfer MRI for neurodegenerative diseases:An update on clinical and preclinical studies
4
作者 Ahelijiang Saiyisan Shihao Zeng +4 位作者 Huabin Zhang Ziyan Wang Jiawen Wang Pei Cai Jianpan Huang 《Neural Regeneration Research》 2026年第2期553-568,共16页
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been... Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease chemical exchange saturation transfer Huntington’s disease magnetic resonance imaging molecular imaging multiple sclerosis neurodegenerative disease Parkinson’s disease
暂未订购
Analysis and modeling of alumina dissolution based on heat and mass transfer 被引量:4
5
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1648-1656,共9页
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use... A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process. 展开更多
关键词 aluminum reduction cell alumina particles dissolution process heat and mass transfer finite difference method
在线阅读 下载PDF
Differentiation of Material Temperature through the Application of Increased Localized Dissolution via Heat Transfer
6
作者 Brian K. Chen 《Journal of Analytical Sciences, Methods and Instrumentation》 2015年第3期44-46,共3页
Increased temperature of a solution increases its solubility, allowing for a greater level of dissolution of the solute. A greater level of dissolution will result in a change in the density of the solution. When a lo... Increased temperature of a solution increases its solubility, allowing for a greater level of dissolution of the solute. A greater level of dissolution will result in a change in the density of the solution. When a localized area of the solution is of a different temperature, this will affect the localized density. Density is one of the factors affecting rate of sinking and the difference in temperature will lead to a change in the rate of sinking. Thus, when an object is at different temperatures, it will transfer heat to or from the solution in different manners and the rate of sinking will be different. This study tested whether sinking rate in a solution with excess solute could be used to judge the temperature of an object and the effect was confirmed with impure Graphite blocks in a Potassium Iodide solution. 展开更多
关键词 CALORIMETRY LOCALIZED Heat transfer Density SINKING
暂未订购
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:2
7
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution dissolution mode Discharge mechanism
在线阅读 下载PDF
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
8
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
9
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag dissolution kinetics
原文传递
The role of mitochondria transfer in cancer biological behavior,the immune system and therapeutic resistance 被引量:1
10
作者 Xintong Lyu Yangyang Yu +2 位作者 Yuanjun Jiang Zhiyuan Li Qiao Qiao 《Journal of Pharmaceutical Analysis》 2025年第3期511-522,共12页
Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in th... Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria.Recent scholarly works,however,suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer.This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms.Specifically,we review the role of mitochondria transfer in regulating cellular metabolism restoration,excess reactive oxygen species(ROS)generation,proliferation,invasion,metastasis,mitophagy activation,mitochondrial DNA(mtDNA)inheritance,immune system modulation and therapeutic resistance in cancer.Additionally,we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments. 展开更多
关键词 Mitochondria transfer Cancer biological behavior Immune system Therapeutic resistance
暂未订购
Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing 被引量:1
11
作者 Miaojie Yu Weiwei Zhang +4 位作者 Xueyan Liu Guohui Zhao Jun Du Yongzhen Wu Wei-Hong Zhu 《Green Energy & Environment》 2025年第2期390-398,共9页
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b... Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration. 展开更多
关键词 Polymer photocatalysts NANOPARTICLES Hydrogen evolution Forster resonance energy transfer
在线阅读 下载PDF
Identification algorithm of low-count energy spectra under short-duration measurement based on heterogeneous sample transfer 被引量:1
12
作者 Hao-Lin Liu Hai-Bo Ji +1 位作者 Jiang-Mei Zhang Jing Lu 《Nuclear Science and Techniques》 2025年第3期12-26,共15页
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ... In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements. 展开更多
关键词 Radionuclide identification Low-count Gamma energy spectral analysis HETEROGENEOUS transfer learning
在线阅读 下载PDF
In situ growth of iron incorporated Ni_(3)S_(2)nanosheet on nickel foam in mediating electron transfer to peroxymonosulfate for pollutant abatement 被引量:1
13
作者 Yunjin Yao Zhongming Tao +5 位作者 Hongwei Hu Lijie Zhang Ziwei Ma Yaoyao Wang Shiyang Lin Shaobin Wang 《Journal of Environmental Sciences》 2025年第4期704-718,共15页
Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement.Unfortunately,this method is significantly hindered in practical applications by the lowefficiency and difficul... Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement.Unfortunately,this method is significantly hindered in practical applications by the lowefficiency and difficult recovery of the catalysts in a powdery form.Herein,a three-dimensional(3D)framework of Fe-incorporated Ni_(3)S_(2)nanosheets in-situ grown on Ni foam(Fe-Ni_(3)S_(2)@NF)was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate(PMS)oxidation of organic compounds inwater.A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni_(3)S_(2)nanosheets on the Ni foam.Fe-Ni_(3)S_(2)@NF possessed outstanding activity and durability in activating PMS,as it effectively facilitated electron transfer from organic pollutants to PMS.Fe-Ni_(3)S_(2)@NF initially supplied electrons to PMS,causing the catalyst to undergo oxidation,and subsequently accepted electrons from organic compounds,returning to its initial state.The introduction of Fe into the Ni_(3)S_(2)lattice enhanced electrical conductivity,promoting mediated electron transfer between PMS and organic compounds.The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni_(3)S_(2),accelerating pollutant abatement due to its porous structure and high conductivity.Furthermore,its monolithic nature simplified the catalyst recycling process.A continuous flow packed-bed reactor by encapsulating Fe-Ni_(3)S_(2)@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h,highlighting its immense potential for practical environmental remediation.This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes. 展开更多
关键词 Nickel foam Organic pollutants Persulfate activation Non-radical pathway Electron transfer
原文传递
MXene-induced electronic structure modulation of Fe-Al-LDH to boost the Fenton-like Reaction:Singlet oxygen evolution and electron-transfer mechanisms 被引量:1
14
作者 Zhongzhu Yang Zeyan Zhou +2 位作者 Xiaofei Tan Guangming Zeng Chang Zhang 《Journal of Materials Science & Technology》 2025年第1期224-237,共14页
Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical domina... Layered double hydroxide(LDH)based heterogonous peroxymonosulfate(PMS)activation degradation of pollutants has attracted extensive attention.The challenge is to selectively regulate the traditional free radical dominant degradation pathway into a nonradical degradation pathway.Herein,an interface ar-chitecture of Ti_(3) C_(2) T_(x)-MXene(MXene)loading on the Fe-Al LDH scaffold was developed,which showed excellent stability and robust resistance against harsh conditions.Significantly,the rate constant for tetra-cycline hydrochloride(TC)degradation in the MXene-LDH/PMS process was 0.421 min^(-1),which was ten times faster than the rate constant for pure Fe-Al LDH(0.042 min^(-1)).Specifically,more reactive Fe with the closer d-band center to the Fermi level results in higher electron transfer efficiency.The occupa-tions of Fe-3d orbitals in Mxene/Fe-Al LDH are pushed above the Fermi level to generate,which results in higher PMS adsorption and inhibition of the release of oxygen-containing active species intermedi-ates,leading to the enhanced^(1)O_(2) generation.Additionally,the built-in electric field in the heterojunc-tion was driven by the charge redistribution between MXene and Fe-Al LDH,resulting in a mediated-electron transfer mechanism,differentiating it from the Fe-Al LDH/PMS system.It was fascinating that MXene/Fe-Al LDH achieved satisfactory treatment efficiency in continuous column reactor and real landfill leachate. 展开更多
关键词 Interface engineering Density functional theory Layered double hydroxides PEROXYMONOSULFATE Electron transfer
原文传递
A deep transfer learning model for the deformation of braced excavations with limited monitoring data 被引量:1
15
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections transfer learning Deep learning Finite element simulation
在线阅读 下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
16
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS CLASSIFICATION AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
A Nonspherical Cloud Scattering Database Using Aggregates of Roughened Bullet Rosettes Model for the Advanced Radiative Transfer Modeling System(ARMS) 被引量:1
17
作者 Ziyue HUANG Hanyu LU +4 位作者 Ziqiang MA Yining SHI Yang HAN Hao HU Jun YANG 《Advances in Atmospheric Sciences》 2025年第7期1483-1498,共16页
Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ... Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table. 展开更多
关键词 nonspherical particles scattering look-up table discrete dipole approximation Advanced Radiative transfer Modeling System
在线阅读 下载PDF
Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence 被引量:1
18
作者 Xiao Yu Dongyue Cui +8 位作者 Mengmeng Wang Zhaojin Wang Mengzhu Wang Deshuang Tu Vladimir Bregadze Changsheng Lu Qiang Zhao Runfeng Chen Hong Yan 《Chinese Chemical Letters》 2025年第3期232-238,共7页
Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a... Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers. 展开更多
关键词 Thermally activated delayed fluorescence Through-space charge transfer CARBORANE Boron clusters Organic light-emitting diodes
原文传递
Element Transfer Reaction theory:Scientific connotation and its applications in chemical industry 被引量:1
19
作者 Hongen Cao Xinrui Xiao +2 位作者 Xu Zhang Yiyang Zhang Lei Yu 《Chinese Chemical Letters》 2025年第9期4-7,共4页
Element Transfer Reaction(ETR)theory is a new fundamental theory guiding the design of synthetic routes.It analyses problems from a brand-new perspective of element circulation,decomposing the factors affecting synthe... Element Transfer Reaction(ETR)theory is a new fundamental theory guiding the design of synthetic routes.It analyses problems from a brand-new perspective of element circulation,decomposing the factors affecting synthetic efficiency into three elements:element sources,driving force,and output.Different from the retrosynthetic analysis method and the atom economy theory,the ETR theory places more emphasis on examining the problem as a whole and comprehensively considering various factors involved in industrial applications.This perspective intends to elaborate on the scientific connotation of the ETR theory and explore its characteristics by discussing the practical application cases. 展开更多
关键词 Element transfer Reaction theory Element source Driving force OUTPUT Energy conservation Atom economy
原文传递
Highly effective charge transfer on ultrathin CuInS_(2) nanosheets for photocatalytic hydrogen evolution 被引量:1
20
作者 ZHAO Min JIANG Zishi +1 位作者 WANG Qiang SUN Jianhui 《黑龙江大学工程学报(中英俄文)》 2025年第1期10-18,共9页
Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thi... Photocatalytic hydrogen production technology is an ideal approach to addressing energy and environmental issues,with efficient charge transfer being the key to achieving high-performance hydrogen production.Ultra-thin CuInS_(2)nanosheets were prepared through a solvothermal method.Subsequently,metallic Ni was surface-modified onto CuInS_(2)through photo-deposition to serve as a co-catalyst.The optimized photocatalyst exhibited a hydrogen production rate of 15.5 mmol·g^(-1)·h^(-1)in water when used an ascorbic acid as hole scavenger,which is 9 times that of the original CuInS_(2).Transient absorption spectra(TAS)analysis demonstrates that the hole transfer from CuInS_(2)nanosheets to ascorbic acid,yielding a long-lived electron with a lifetime of 45.6μs.The electrons in CuInS_(2)are efficiently captured by Ni as active sites for driving hydrogen evolution.In situ TAS further indicates that ascorbic acid and Ni sites synergistically promote the electron transfer dynamics of CuInS_(2),achieving an electron transfer efficiency of 48.4%.This work provides a viable strategy for designing highly efficient photocatalysts with enhanced charge transfer. 展开更多
关键词 semiconductor nanosheets CuInS_(2) photocatalytic hydrogen charge transfer dynamics transient absorption spectra
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部