期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques 被引量:2
1
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 Slope stability analysis Monte Carlo simulation Neural network(NN) transfer learning(tl)
在线阅读 下载PDF
Multimodal Emotion Recognition with Transfer Learning of Deep Neural Network 被引量:2
2
作者 HUANG Jian LI Ya +1 位作者 TAO Jianhua YI Jiangyan 《ZTE Communications》 2017年第B12期23-29,共7页
Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.W... Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.We use transfer learning to improve its performance with pretrained models on largescale data.Audio is encoded using deep speech recognition networks with 500 hours’speech and video is encoded using convolutional neural networks with over 110,000 images.The extracted audio and visual features are fed into Long Short-Term Memory to train models respectively.Logistic regression and ensemble method are performed in decision level fusion.The experiment results indicate that 1)audio features extracted from deep speech recognition networks achieve better performance than handcrafted audio features;2)the visual emotion recognition obtains better performance than audio emotion recognition;3)the ensemble method gets better performance than logistic regression and prior knowledge from micro-F1 value further improves the performance and robustness,achieving accuracy of 67.00%for“happy”,54.90%for“an?gry”,and 51.69%for“sad”. 展开更多
关键词 DEEP NEUTRAL network ENSEMBLE method MULTIMODAL EMOTION recognition transfer learning
在线阅读 下载PDF
基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断模型 被引量:2
3
作者 许家瑞 陈焰 《机电工程》 北大核心 2025年第8期1458-1468,共11页
在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振... 在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振动信号进行了阈值化去噪处理,消除了背景噪声;然后,使用同步压缩小波变换算法,对去噪后的振动信号进行了时频分析和时频变换,将一维去噪信号转变为二维时频图,用于构建故障诊断模型的训练样本;接着,对预训练ResNet50模型进行了微调,实现了迁移学习(TL)目的,并对迁移学习模型进行了轻量化改进,同时在模型内部嵌入了多头注意力机制,用于改善模型对不同特征权重的分配;最后,使用2组齿轮副数据和2组轴承数据,对基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法的有效性进行了验证。研究结果表明:基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法在无负荷工况下的单齿轮副故障诊断中,模型分类精度高达99.45%,模型训练时间为644 s;在齿轮副和轴承多重故障诊断中,模型分类精度为99.59%,模型训练时间为643 s;在有负荷工况的轴承和齿轮副多重故障诊断中,模型分类精度为98.12%,模型训练时间为646 s。这表明基于SWT和ResNet50-TL-S模型的齿轮箱故障诊断方法具备较高的齿轮箱故障诊断精度和较短的模型训练时间。 展开更多
关键词 机械传动 小波阈值去噪 同步压缩小波变换 ResNet50模型 轻量化改进 多头注意力机制 迁移学习模型
在线阅读 下载PDF
Classification of Breast Masses Using Ultrasound Images by Approaching GAN,Transfer Learning,and Deep Learning Techniques 被引量:1
4
作者 Sushovan Chaudhury Kartik Sau 《Journal of Artificial Intelligence and Technology》 2023年第4期142-153,共12页
Breast cancer is a common cause of death among women worldwide.Ultrasonic imaging is a valuable diagnostic tool in breast cancer detection.However,the accuracy of computer-aided diagnosis systems for breast cancer cla... Breast cancer is a common cause of death among women worldwide.Ultrasonic imaging is a valuable diagnostic tool in breast cancer detection.However,the accuracy of computer-aided diagnosis systems for breast cancer classification is limited due to the lack of well-annotated datasets.This study proposes a deep learning(DL)-based framework for breast mass classification using ultrasound images,which incorporates a novel data augmentation technique,generative adversarial network(GAN),and transfer learning(TL).Automating early tumor identification and classification in breast cancer diagnosis can save lives by improving the accuracy of diagnoses and reducing the need for invasive procedures.However,the limited availability of wellannotated datasets for ultrasound images of breast cancer has hampered the development of accurate computer-aided diagnosis systems.The accuracy of breast mass classification using ultrasound images is limited due to the lack of well-annotated datasets.Conventional data augmentation techniques have limitations in applications with strict guidelines,such as medical datasets.Therefore,there is a need to develop a novel data augmentation technique to improve the accuracy of breast mass classification using ultrasound images.The proposed framework can be extended to other medical imaging applications,where the availability of well-annotated datasets is limited.The GAN-based data augmentation technique and TL-based feature extraction can be used to improve the accuracy of classification models in other medical imaging applications.Additionally,the proposed framework can be used to develop accurate computer-aided diagnosis systems for breast cancer detection in clinical settings.The proposed framework incorporates a DL-based approach for breast mass classification using ultrasound images.The framework includes a GAN-based data augmentation technique and TL for feature extraction.The dataset used for training and testing the model is the breast ultrasound images(BUSI)dataset,which includes 1311 images with normal and abnormal breast masses.The proposed framework achieved an accuracy of 99.6%for breast mass classification using ultrasound images,which outperformed existing methods.The GAN-based data augmentation technique and TL-based feature extraction improved the accuracy of the classification model.The results suggest that DL algorithms can be effectively applied for breast ultrasound categorization.The proposed framework presents a novel approach for breast mass classification using ultrasound images,which incorporates a GAN-based data augmentation technique and TL-based feature extraction.The results demonstrate that the proposed framework outperforms existing methods and achieves high accuracy in breast mass classification using ultrasound images.This framework can be useful for developing accurate computer-aided diagnosis systems for breast cancer detection. 展开更多
关键词 breast masses breast ultrasound deep learning fully connected convolution generative adversarial network(GAN) transfer learning(tl)
在线阅读 下载PDF
A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance
5
作者 M.Jayasree K.A.Sunitha +3 位作者 A.Brindha Punna Rajasekhar G.Aravamuthan G.Joselin Retnakumar 《Intelligent Automation & Soft Computing》 2024年第4期745-764,共20页
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d... Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses. 展开更多
关键词 Face recognition pose variations transfer learning method yaw poses FaceNet Inception-v2
在线阅读 下载PDF
Gas-insulated switchgear partial discharge classification method based on deep transfer learning using experimental and field data
6
作者 Xutao Han Haotian Wang +4 位作者 Jie Cui Yang Zhou Tianyi Shi Xuanrui Zhang Junhao Li 《High Voltage》 2025年第4期845-855,共11页
Gas-insulated switchgear(GIS)plays a critical role in ensuring the reliability of power systems,but partial discharge(PD)is a primary cause of failures within GIS equipment.Traditional PD diagnostic methods rely heavi... Gas-insulated switchgear(GIS)plays a critical role in ensuring the reliability of power systems,but partial discharge(PD)is a primary cause of failures within GIS equipment.Traditional PD diagnostic methods rely heavily on laboratory data,which differ signifi-cantly from that under the complex conditions of field data,leading to a marked drop in recognition accuracy when they are applied to field PD diagnosis.This study addresses the challenge by integrating field data into the training process,utilising a deep transfer learning approach that combines laboratory and field data to improve diagnostic accuracy for GIS PD.The research collected PD data from laboratory models representing five defect types and field data gathered from operational GIS equipment.A deep residual network(ResNet50)was pretrained using laboratory data and fine-tuned with field data through deep transfer learning to optimise the recognition of PD in field conditions.The results show that the proposed model achieves a significantly higher recognition accuracy(93.7%)for field data compared to traditional methods(60%-70%).The integration of deep transfer learning ensures that both low-dimensional general features from labora-tory data and high-dimensional specific features from field data are effectively utilised.This research significantly contributes to improving the diagnostic accuracy of PD in GIS under field conditions,providing a robust method for defect detection in operational equipment. 展开更多
关键词 partial discharge pd field dataleading gas insulated switchgear laboratory datawhich deep transfer learning power systemsbut diagnostic methods integrating field data training processutilising
在线阅读 下载PDF
Perturbed low-thrust geostationary orbit transfer guidance via polynomial costate estimation 被引量:2
7
作者 Zhao LI Hengnian LI +1 位作者 Fanghua JIANG Junfeng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期181-193,共13页
This paper proposes an optimal,robust,and efficient guidance scheme for the perturbed minimum-time low-thrust transfer toward the geostationary orbit.The Earth’s oblateness perturbation and shadow are taken into acco... This paper proposes an optimal,robust,and efficient guidance scheme for the perturbed minimum-time low-thrust transfer toward the geostationary orbit.The Earth’s oblateness perturbation and shadow are taken into account.It is difficult for a Lyapunov-based or trajectory-tracking guidance method to possess multiple characteristics at the same time,including high guidance optimality,robustness,and onboard computational efficiency.In this work,a concise relationship between the minimum-time transfer problem with orbital averaging and its optimal solution is identified,which reveals that the five averaged initial costates that dominate the optimal thrust direction can be approximately determined by only four initial modified equinoctial orbit elements after a coordinate transformation.Based on this relationship,the optimal averaged trajectories constituting the training dataset are randomly generated around a nominal averaged trajectory.Five polynomial regression models are trained on the training dataset and are regarded as the costate estimators.In the transfer,the spacecraft can obtain the real-time approximate optimal thrust direction by combining the costate estimations provided by the estimators with the current state at any time.Moreover,all these computations onboard are analytical.The simulation results show that the proposed guidance scheme possesses extremely high guidance optimality,robustness,and onboard computational efficiency. 展开更多
关键词 Low thrust Orbital transfer Trajectory optimization GUIDANCE Indirect method Orbital averaging Machine learning Geostationary satellites
原文传递
变工况下基于频率不变性的高速列车小幅蛇行识别方法
8
作者 宁静 洪梓轩 +3 位作者 王铎颖 王子轩 张兵 陈春俊 《振动与冲击》 北大核心 2025年第16期264-272,共9页
高速列车蛇行会影响乘客的舒适度,损害列车部件,甚至危及列车运行的安全。识别蛇行状态,特别是蛇行失稳开始前的小幅蛇行状态至关重要。针对变工况下蛇行识别不准的问题,提出了一种基于频率不变性的小幅蛇行识别方法。首先,考虑到在轨... 高速列车蛇行会影响乘客的舒适度,损害列车部件,甚至危及列车运行的安全。识别蛇行状态,特别是蛇行失稳开始前的小幅蛇行状态至关重要。针对变工况下蛇行识别不准的问题,提出了一种基于频率不变性的小幅蛇行识别方法。首先,考虑到在轨道不平顺等外部因素的影响下,蛇行频率比时域特征更稳定,因此综合蛇行频率和时域信息,构建了频率不变特征融合模块(域内迁移);然后,将该模块和域间迁移结合,直接从未标记的数据中提取更多的不变特征,从而提高蛇行识别的准确性;最后,将该方法运用于高速列车实测数据中,几种不同迁移任务识别平均准确率均在95%以上,识别结果明显优于非迁移学习方法以及其他迁移方法。 展开更多
关键词 高速列车 小幅蛇行 变工况 迁移学习 识别方法
在线阅读 下载PDF
基于迁移学习的层状粘接结构界面太赫兹识别
9
作者 任姣姣 何伟涵 +2 位作者 张霁旸 牟达 李丽娟 《长春理工大学学报(自然科学版)》 2025年第2期55-68,共14页
层状粘接结构广泛应用于航空航天领域,为了保证层状粘接结构的高可靠性,当前大多利用无损检测与深度学习相结合的方式来进行生产和维护期间的检测。然而,大多数检测模型依赖大量标注样本,当标注样本较少时,模型性能显著下降。此外,不同... 层状粘接结构广泛应用于航空航天领域,为了保证层状粘接结构的高可靠性,当前大多利用无损检测与深度学习相结合的方式来进行生产和维护期间的检测。然而,大多数检测模型依赖大量标注样本,当标注样本较少时,模型性能显著下降。此外,不同结构组合的多样性增加了模型训练的难度。针对这些问题,提出了一种基于迁移学习的层状粘接结构界面太赫兹(THz)识别方法,利用传输矩阵法分析层状粘接结构迁移的可行性,使用传输矩阵法构建仿真信号数据集,旨在解决由于小样本问题导致的深度学习模型泛化能力不足的问题,提高模型在少量标注样本和多样化结构上的检测性能;融合Focal Loss和MMD损失函数,改善类别不平衡带来的影响,增强模型的跨域泛化能力;分析不同网络层对识别结果的影响,确定模型的微调策略,缩短训练时间并减少计算资源。实验结果表明,该方法在层状粘接结构峰值界面识别中表现出较高的精度与鲁棒性,界面识别率达到99.85%,飞行时间误差为0.1 ps。 展开更多
关键词 迁移学习 太赫兹 层状结构 界面识别 传输矩阵法
在线阅读 下载PDF
应用MMTONet的迁移学习智能盐体分割方法
10
作者 李克文 范娅婷 +1 位作者 徐志峰 贾韶辉 《石油地球物理勘探》 北大核心 2025年第3期631-641,共11页
盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目... 盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目前在地震勘探中进行盐体的解释及可视化仍存在挑战。文章将盐体解释视为地震图像的语义分割问题,提出了基于迁移学习的上下文融合与混合注意力的智能盐体分割(Multi-path structure Mixed Attention and Transfer Optimized Net,MMTONet)方法。同时设计了一种基于盐体上下文特征融合模块,进而建立了改进注意力卷积混合的跳跃连接机制,以更好地弥补由下采样造成的信息损失,从而提高模型对盐体边界与高振幅噪声的像素级辨别能力。在此基础上,还设计了迁移学习的适配器微调策略,提升了模型在实际数据上的泛化能力。在地震数据集上的实验结果表明,MMTONet在提高分割精度和减少计算量、参数量方面均优于主流的语义分割方法。 展开更多
关键词 深度学习 盐体分割 地震图像 迁移学习 MMTONet 方法
在线阅读 下载PDF
基于结构对应学习的大跨桥梁涡激振动识别方法研究
11
作者 万春风 赵文龙 +2 位作者 周珍伟 曹素功 胡皓 《桥梁建设》 北大核心 2025年第3期73-80,共8页
为解决部分大跨桥梁缺少历史涡激振动数据而无法进行涡激振动识别的问题,提出一种基于结构对应学习(Structural Correspondence Learning,SCL)的大跨桥梁涡激振动识别方法。该方法首先将含有涡激振动数据与标签的参考桥梁数据集设为源域... 为解决部分大跨桥梁缺少历史涡激振动数据而无法进行涡激振动识别的问题,提出一种基于结构对应学习(Structural Correspondence Learning,SCL)的大跨桥梁涡激振动识别方法。该方法首先将含有涡激振动数据与标签的参考桥梁数据集设为源域,需要识别的目标桥梁数据作为目标域,在时间序列上截取加速度数据提取涡激振动特征;然后使用SCL方法对领域间特征样本进行对齐,将源域变为自适应源域;最后使用自适应源域样本训练实现目标桥梁的实时涡激振动智能识别。选取内陆地区某一较少发生涡激振动的钢-混组合大跨悬索桥作为目标桥梁,沿海地区某一较为频繁发生涡激振动的大跨悬索桥作为参考桥梁,采用所提方法对目标桥梁进行涡激振动智能识别与早期预警,以验证所提方法的有效性。结果表明:所提方法可利用其它已发生涡激振动桥梁的振动信号,通过迁移学习来识别目标桥梁的涡激振动;相较于不使用迁移学习的基准模型,所提方法取得了更优的结果,且更早地探测到了涡激振动的发生,具有较好的适用性与准确性,可为大跨桥梁涡激振动早期预警与控制提供技术支撑。 展开更多
关键词 大跨桥梁 涡激振动 结构健康监测 结构对应学习 迁移学习 特征向量 识别方法
在线阅读 下载PDF
面向不同标签与域配置的统一跨域故障诊断方法
12
作者 张宇腾 吕宇璠 +4 位作者 孔运 陈科 闫志武 董明明 褚福磊 《振动工程学报》 北大核心 2025年第11期2557-2568,共12页
可靠的设备健康监测与故障诊断技术是保证高端装备安全高效运行的关键。基于无监督域自适应的跨域智能诊断技术已在跨设备、变工况等迁移诊断场景中展现出广阔的应用前景。然而,此类方法依赖域间标签关系和域配置的特定事前假设,致使无... 可靠的设备健康监测与故障诊断技术是保证高端装备安全高效运行的关键。基于无监督域自适应的跨域智能诊断技术已在跨设备、变工况等迁移诊断场景中展现出广阔的应用前景。然而,此类方法依赖域间标签关系和域配置的特定事前假设,致使无监督域自适应技术在实际工业故障诊断场景中的泛化性与实用性受限。针对上述问题,本文提出一种面向不同标签与域配置的统一跨域故障诊断方法。该方法构建一种多场景共享的预测类别混淆偏差用于指导跨域知识迁移,从而适应各种跨域故障诊断场景。为更准确地度量预测类别混淆偏差,提出一种基于原型相似度的故障判别方法以增强分类鲁棒性,从而为估计预测类别混淆偏差提供可靠的预测分布。此外,设计了一种基于标签平滑的概率校准方法进行概率正则化,以缓解过度自信预测导致的预测类别混淆偏差低估。行星齿轮箱传动系统数据集试验验证结果显示,所提方法在4种不同标签和域配置的跨域诊断场景中,平均诊断准确率达到98.37%,相较于前沿对比方法具有优势,充分验证了所提方法的通用性和优越性。 展开更多
关键词 智能故障诊断 多场景跨域诊断 统一方法 迁移学习
在线阅读 下载PDF
旋转刀尖点频响函数的迁移学习预测技术
13
作者 王贤钧 王玲 +2 位作者 李洋洋 陈春霞 殷国富 《哈尔滨工业大学学报》 北大核心 2025年第8期134-142,共9页
针对刀尖点频响函数受机床主轴位置、主轴转速和刀具参数的影响较大的难点,为快速准确地获取机床刀尖点频响函数,文中引入迁移学习提出了一种基于少量试验样本来获取不同刀具参数的旋转刀尖频响函数预测模型的方法。首先,生成机床主轴... 针对刀尖点频响函数受机床主轴位置、主轴转速和刀具参数的影响较大的难点,为快速准确地获取机床刀尖点频响函数,文中引入迁移学习提出了一种基于少量试验样本来获取不同刀具参数的旋转刀尖频响函数预测模型的方法。首先,生成机床主轴位置和转速的正交规划表,基于空运行自激励法和卷积神经网络(CNN)算法,建立与机床加工位置和主轴转速相关的刀尖频响函数预测模型。其次,考虑刀具伸长量、直径和种类等参数的影响,利用少量的相关数据样本,基于迁移学习训练出不同刀具工况的刀尖频响函数预测模型。最后,基于加工中心VMC80IV开展了锤击实验和空运行自激励实验,采用实验数据对预测模型进行训练,以各阶次模态参数为模型输出值,通过模态叠加法重构出刀尖点频响函数,并对比模型预测值和实际测量值。结果表明,对于不同刀具工况下的旋转刀尖频响函数预测模型,各阶次固有频率的预测误差不超过2%,阻尼比的预测误差不超过5%,验证了该预测模型的有效性和准确性。 展开更多
关键词 刀尖点频响函数 激励实验 卷积神经网络 有限样本 迁移学习
在线阅读 下载PDF
重大疫情下社区韧性治理能力深度迁移学习评价方法
14
作者 陈闻鹤 常志朋 +2 位作者 周涵婷 程龙生 文卜玉 《中国管理科学》 北大核心 2025年第8期100-111,共12页
在面对重大疫情的基层应急管理体系构建中,社区韧性治理能力对稳定社区居民情绪、组织社区生活、增强风险抵抗力具有重要作用。在大数据背景下,重大疫情下的社区韧性治理能力评价模型存在样本量不足、部分样本评价困难、特征提取依赖人... 在面对重大疫情的基层应急管理体系构建中,社区韧性治理能力对稳定社区居民情绪、组织社区生活、增强风险抵抗力具有重要作用。在大数据背景下,重大疫情下的社区韧性治理能力评价模型存在样本量不足、部分样本评价困难、特征提取依赖人工经验、评价模型最优参数确定难等问题,导致现有机器学习评价方法难以做出准确评价。因此,本文提出结合数据增强和深度迁移学习方法的新型评价方法,该方法使用峰值聚类改进自适应过采样方法(DPAS)和迁移学习方法(TL)从数据增扩和“预训练-微调”两方面提升模型在样本数量不足时的训练效能;采用GoogLeNet网络通过Inception模块自动提取评价指标用于样本识别,并引入多分类焦点损失(MFL)函数聚焦难分类样本损失结果;同时,利用多目标黏菌优化算法(MOSMA)优化超参数,进一步提升模型性能。实例数据验证表明,本文提出方法的评价性能高于其他传统评价方法,通过消融实验和敏感性分析证明了其结构的合理性。 展开更多
关键词 迁移学习(tl) 多目标黏菌优化算法(MOSMA) 数据增强 社区韧性治理 重大疫情
原文传递
Machinery fault diagnostic method based on numerical simulation driving partial transfer learning 被引量:3
15
作者 LOU YunXia KUMAR Anil XIANG JiaWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3462-3474,共13页
Artificial intelligence(AI),which has recently gained popularity,is being extensively employed in modern fault diagnostic research to preserve the reliability and productivity of machines.The effectiveness of AI is in... Artificial intelligence(AI),which has recently gained popularity,is being extensively employed in modern fault diagnostic research to preserve the reliability and productivity of machines.The effectiveness of AI is influenced by the quality of the labeled training data.However,in engineering scenarios,available data on mechanical equipment are scarce,and collecting massive amounts of well-annotated fault data to train AI models is expensive and difficult.In response to the inadequacy of training samples,a numerical simulation-based partial transfer learning method for machinery fault diagnosis is proposed.First,a suitable simulation model of critical components in a mechanical system is developed using the finite element method(FEM),and numerical simulation is performed to acquire FEM simulation samples containing different fault types.Second,several synthetic simulation samples are generated to form complete source domain training samples using a generative adversarial network.Subsequently,the partial transfer learning network is trained to extract shared fault characteristics between the simulation and measured samples in the case of class imbalance.Finally,the resulting model is used to diagnose unknown samples from real-world mechanical systems in operation.The proposed method is tested on actual fault samples of bearings and gears obtained from a public dataset and experimental test rig available in our laboratory,achieving average classification accuracy of 99.54%and 99.64%,respectively.Comparison investigations reveal that the proposed method has superior classification and generalization ability when detecting faults in real mechanical systems. 展开更多
关键词 finite element method generative adversarial network fault diagnosis partial transfer learning BEARING GEAR
原文传递
基于注意力自适应迁移的零样本跨语言文本分类方法
16
作者 李文博 高盛祥 张勇丙 《昆明理工大学学报(自然科学版)》 北大核心 2025年第4期95-106,共12页
零样本跨语言文本分类任务是指仅依赖源语言标注数据训练模型,并将其迁移到目标语言上,不需要目标语言的标注数据.而传统的跨语言文本分类方法通常需要一定规模的目标语言标注数据,且在跨语言迁移过程中往往忽略以类别标签相关联的关键... 零样本跨语言文本分类任务是指仅依赖源语言标注数据训练模型,并将其迁移到目标语言上,不需要目标语言的标注数据.而传统的跨语言文本分类方法通常需要一定规模的目标语言标注数据,且在跨语言迁移过程中往往忽略以类别标签相关联的关键词,导致跨语言迁移效果不佳.针对以上问题,提出了一种基于注意力自适应迁移的零样本跨语言文本分类方法,在完全不依赖目标语言标注数据的情况下,通过对种子词重要性建模和自适应迁移解决零样本跨语言文本分类的难题.首先,基于文本的词分布特征在源语言上抽取种子词,并对其进行重要性建模,生成重要性矩阵.在此基础上,利用大规模源语言标注数据训练教师模型,在训练过程中通过种子词的词概率分布进一步强调关键性信息.其次,将教师模型捕获的重要词通过跨双语词典映射关系映射到目标语言上.再次,利用教师模型为目标语言中包含种子词的无标注数据生成伪标签,这些伪标签构成了学生模型的初始训练数据,并以此训练学生.最后,学生模型进一步对目标语言的无标注数据进行预测,生成新的标注数据并扩充训练集,通过迭代优化最终得到用于目标语言分类任务的学生模型.实验表明,提出的方法在MLDoc和CLS数据集上与基线模型对比,准确率分别提高了10.5%、6.7%. 展开更多
关键词 跨语言文本分类 零样本 自适应迁移学习 自注意力 自适应方法
原文传递
基于CNN的考虑地震波时频特征影响选波方法研究
17
作者 康昊 郭子雄 +1 位作者 刘洋 侯也婷 《工程力学》 北大核心 2025年第11期103-114,共12页
地震波的时域特征对高层建筑地震反应有显著影响,而现有地震波选取方法并未有效考虑地震波时域特征的影响,导致高层建筑弹塑性时程分析结果不合理。该文在现有选波方法的基础上,提出了一种基于卷积神经网络(CNN)的选波方法以有效考虑地... 地震波的时域特征对高层建筑地震反应有显著影响,而现有地震波选取方法并未有效考虑地震波时域特征的影响,导致高层建筑弹塑性时程分析结果不合理。该文在现有选波方法的基础上,提出了一种基于卷积神经网络(CNN)的选波方法以有效考虑地震波时频特征对结构地震反应的影响。该选波方法采用弹性时域反应图表征地震波时域特征对建筑结构地震反应的影响,结合迁移学习方法搭建并训练CNN模型,建立建筑结构地震反应与地震波弹性时域反应图之间的映射关系。利用训练好的CNN模型判断备选地震波时域特征对结构地震反应的影响,并完成选波。采用该文提出的基于CNN选波方法和现有选波方法对6个周期不同的高层结构进行选波测试及验证。结构弹塑性时程分析结果显示,基于CNN选波方法可以在少量地震动记录的输入下,实现对大量地震动输入下结构响应的稳定估计,显著提高弹塑性时程分析结果合理性。 展开更多
关键词 弹塑性时程分析 地震波选择方法 时频特征影响 弹性时域反应图 卷积神经网络 迁移学习
在线阅读 下载PDF
无人机通信多模抗干扰:融合二维迁移强化学习的协同决策方法
18
作者 王诗雨 汪西明 +3 位作者 可臻怡 刘典雄 刘继泽 杜智勇 《电子与信息学报》 北大核心 2025年第11期4200-4210,共11页
针对无人机(UAV)在复杂电磁环境下通信易受干扰攻击的问题,该文提出一种多模式协同抗干扰架构。通过融合智能跳频(IFH)、基于干扰的反向散射通信(JBC)与能量采集(EH)技术,构建“规避-利用-转化”三位一体的防御体系,并设计二维迁移学习... 针对无人机(UAV)在复杂电磁环境下通信易受干扰攻击的问题,该文提出一种多模式协同抗干扰架构。通过融合智能跳频(IFH)、基于干扰的反向散射通信(JBC)与能量采集(EH)技术,构建“规避-利用-转化”三位一体的防御体系,并设计二维迁移学习机制解决资源受限平台的实时决策难题。在任务维度建立模式间策略共享网络,提取决策共性特征并设计平行深度Q学习网络(DQN)进行策略学习,在抗干扰模式维度通过历史经验复用加速在线学习。仿真结果表明,该文所提方案较传统深度强化学习算法收敛速度提升64%,在动态干扰环境下通信中断概率始终低于20%。通过合理选择抗干扰模式与信道,系统在不同干扰模式下仍能维持高效通信,实现抗干扰性能与能耗的最优均衡。 展开更多
关键词 迁移学习 深度强化学习 多模抗干扰通信 无人机通信
在线阅读 下载PDF
基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法
19
作者 何肖阳 陈小龙 +3 位作者 杜晓林 苏宁远 袁旺 关键 《系统工程与电子技术》 北大核心 2025年第4期1155-1167,共13页
雷达作为海上目标监测和识别的重要手段,海上目标运动特征精细化描述与分类是其关键技术。基于深度学习的卷积网络分类方法不依赖于模型,但仍难以适应复杂多变的海洋环境、多样性海上目标,泛化能力有限。将卷积注意力机制模块(convoluti... 雷达作为海上目标监测和识别的重要手段,海上目标运动特征精细化描述与分类是其关键技术。基于深度学习的卷积网络分类方法不依赖于模型,但仍难以适应复杂多变的海洋环境、多样性海上目标,泛化能力有限。将卷积注意力机制模块(convolutional block attention module,CBAM)融入Swin-Transformer网络,并基于迁移学习(transfer learning,TL)策略,提出一种兼顾舰船目标和低空旋翼飞行目标的海上微动目标分类方法(简称为TL-CBAM-Swin-Transformer),提升多种观测条件下的模型分类适应能力。首先,建立海上微动目标模型,并基于3种雷达实测数据构建海面非匀速平动、三轴转动、直升机、固定翼无人机的微动时频数据集。然后,设计TL-CBAM-Swin-Transformer网络,CBAM从通道维和空间维提取特征,提高其小尺度中多头注意力信息的提取能力。实测数据验证结果表明,相比Swin-Transformer,所提网络的分类准确度提升3.43%。采用TL法,将所提网络在ImageNet数据上进行预训练,将智能像素处理(intelligent pixel processing,IPIX)雷达微动目标作为源域进行预训练,并迁移至科学与工业研究委员会(Council for Scientific and Industrial Research,CSIR)雷达微动目标,分类概率达97.9%,将直升机旋翼作为源域进行预训练并迁移至固定翼无人机,分类概率达98.8%,验证了所提算法具有较强的泛化能力。 展开更多
关键词 雷达目标分类 海上微动目标 迁移学习 Swin-Transformer网络 注意力机制 时频分析
在线阅读 下载PDF
An Adaptive Features Fusion Convolutional Neural Network for Multi-Class Agriculture Pest Detection
20
作者 Muhammad Qasim Syed MAdnan Shah +4 位作者 Qamas Gul Khan Safi Danish Mahmood Adeel Iqbal Ali Nauman Sung Won Kim 《Computers, Materials & Continua》 2025年第6期4429-4445,共17页
Grains are the most important food consumed globally,yet their yield can be severely impacted by pest infestations.Addressing this issue,scientists and researchers strive to enhance the yield-to-seed ratio through eff... Grains are the most important food consumed globally,yet their yield can be severely impacted by pest infestations.Addressing this issue,scientists and researchers strive to enhance the yield-to-seed ratio through effective pest detection methods.Traditional approaches often rely on preprocessed datasets,but there is a growing need for solutions that utilize real-time images of pests in their natural habitat.Our study introduces a novel twostep approach to tackle this challenge.Initially,raw images with complex backgrounds are captured.In the subsequent step,feature extraction is performed using both hand-crafted algorithms(Haralick,LBP,and Color Histogram)and modified deep-learning architectures.We propose two models for this purpose:PestNet-EF and PestNet-LF.PestNet-EF uses an early fusion technique to integrate handcrafted and deep learning features,followed by adaptive feature selection methods such as CFS and Recursive Feature Elimination(RFE).PestNet-LF utilizes a late fusion technique,incorporating three additional layers(fully connected,softmax,and classification)to enhance performance.These models were evaluated across 15 classes of pests,including five classes each for rice,corn,and wheat.The performance of our suggested algorithms was tested against the IP102 dataset.Simulation demonstrates that the Pestnet-EF model achieved an accuracy of 96%,and the PestNet-LF model with majority voting achieved the highest accuracy of 94%,while PestNet-LF with the average model attained an accuracy of 92%.Also,the proposed approach was compared with existing methods that rely on hand-crafted and transfer learning techniques,showcasing the effectiveness of our approach in real-time pest detection for improved agricultural yield. 展开更多
关键词 Artificial neural network(ANN) support vector machine(SVM) deep neural network(DNN) transfer learning(tl)
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部