Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies.Biomaterial therapies show promise as medical materials for neural repair through immunomodulation,struct...Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies.Biomaterial therapies show promise as medical materials for neural repair through immunomodulation,structural support,and delivery of therapeutic biomolecules.However,a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.We have deployed a two-dimensional,high-density multicellular cortical brain sheet to develop a facile model of injury(macrotransection/scratch wound)in vitro.The model encompasses the major neural cell types involved in pathological responses post-injury.Critically,we observed hallmark pathological responses in injury foci including cell scarring,immune cell infiltration,precursor cell migration,and shortrange axonal sprouting.Delivering test magnetic particles to evaluate the potential of the model for biomaterial screening shows a high uptake of introduced magnetic particles by injury-activated immune cells,mimicking in vivo findings.Finally,we proved it is feasible to create reproducible traumatic injuries in the brain sheet(in multielectrode array devices in situ)characterized by focal loss of electrical spiking in injury sites,offering the potential for longer term,electrophysiology plus histology assays.To our knowledge,this is the first in vitro simulation of transecting injury in a two-dimensional multicellular cortical brain cell sheet,that allows for combined histological and electrophysiological readouts of damage/repair.The patho-mimicry and adaptability of this simplified model of brain injury could benefit the testing of biomaterial therapeutics in regenerative neurology,with the option for functional electrophysiological readouts.展开更多
This study aims to investigate the effect of non-transecting anastomotic urethroplasty for treatment of posterior urethral stricture. A total of 23 patients with traumatic posterior urethral stricture were enrolled an...This study aims to investigate the effect of non-transecting anastomotic urethroplasty for treatment of posterior urethral stricture. A total of 23 patients with traumatic posterior urethral stricture were enrolled and then divided into two groups. In one group, 12 patients underwent non-transecting anastomotic urethroplasty. In the other group, 11 patients underwent conventional posterior urethra end-to-end anastomosis. The effect of operation was evaluated using the following parameters: the bleeding amount during operation, operation time, IIEF-5 scores after operation, maximum flow rate (Qmax), and rating scale of quality of life (QoL). The comparison between the conventional posterior urethra end-to-end anastomosis group and the non-transecting anastomotic urethroplasty group showed no significant difference with regard to average operation time. However, a significant difference was observed between the groups with regard to the bleeding amount during operation. The patients in the group of uon-transecting anastomotic urethroplasty urinated smoothly after the removal of catheter. Meanwhile, one patient from the group of conventional posterior urethra end-to-end anastomosis had difficulty urinating after the removal of catheter. Furthermore, significant differences in the operation time, bleeding amount during operation, IIEF-5 scores after operation, and rating scale of QoL were observed, whereas no significant difference was observed between urine flow rates of the two groups after operation. Overall, non-transecting anastomotic urethroplasty is effective for posterior urethra reconstruction, and it can reduce the occurrence rate of erectile dysfunction after operation.展开更多
Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that ...Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.展开更多
The article deals with forest communities that develop on small surfaces on steep gradients of the geomorphologically diverse landscape of the Kras plateau.They appear in small depressions called dolines,where a steep...The article deals with forest communities that develop on small surfaces on steep gradients of the geomorphologically diverse landscape of the Kras plateau.They appear in small depressions called dolines,where a steep gradient of ecological conditions appears over a small spatial scale.We tried to detect the turnover of forest communities on this small scale and steep gradient with small plots(microplots)of 4 m^(2)arranged in a continuous transect.We sampled only the ground layer and estimated the cover of each vascular plant species.The main problem was that we could not sample vegetation plots in standard sizes,which would allow a standard classification procedure.We built an expert system based on all of the relevant standard vegetation plots from the region and applied this system on a microplot matrix.We classified one third of microplots in this way,but the remainder were classified by semi-supervised k-means clustering.We thus established 8 communities that appear in dolines and compared their characteristics and ecological conditions by Ellenberg indicator values.Our results show that oak-hornbeam forests can be found in the bottom of dolines.Towards the bottom of deeper dolines,mesophilous ravine forests dominated by sycamore on rocky places,and sessile oak forests on deeper soils appear.On lower slopes,thermophilous ravine forests dominated by limes appear on rocky places.Upper slopes are dominated by Turkey oak,hophornbeam-pubescent oak forests and shrub formations.Turkey oak forests can be found on rather deeper soils than hophornbeam-pubescent oak forests.At the top,hophornbeam-pubescent oak forests can be found that build the zonal vegetation of the region.On rock walls vegetation of rock crevices can be found.The high biodiversity of the region supports the idea that diverse karstic features might have the potential for formation of refugia in future foreseen climate change,related to the potential of karstic relief to create diverse climatic conditions.展开更多
In adult mammals,optic nerve injury leads to irreversible vision loss due to its extremely limited regenerative capacity.In contrast,adult zebrafish possess a robust capacity for spontaneous visual system regeneration...In adult mammals,optic nerve injury leads to irreversible vision loss due to its extremely limited regenerative capacity.In contrast,adult zebrafish possess a robust capacity for spontaneous visual system regeneration,although the spatiotemporal coordination of recovery across the retina,optic nerve,and brain remains poorly understood.In the present study,the regenerative dynamics following optic nerve transection were systematically characterized in adult zebrafish over a 5 week period using hematoxylin-eosin staining,immunohistochemistry,transmission electron microscopy,single-cell RNA sequencing,and optokinetic response(OKR)behavioral assessments.At 1 week post-injury(1 wpi),retinal ganglion cell depletion was evident but showed significant recovery by 2 wpi.Concurrently,the injured optic nerve displayed a marked increase in diameter and cell number at 2 wpi,including widespread expression of proliferating cell nuclear antigen,consistent with heightened proliferative activity.Single-cell transcriptomic profiling at 2 wpi revealed five principal cell populations:fibroblasts,mural cells,immune cells,mature oligodendrocytes,and myelin-forming oligodendrocytes.By 4-5 wpi,remyelination within the optic nerve and re-establishment of synaptic architecture in the optic tectum were strongly correlated with functional restoration of OKR behavior.These findings provide a comprehensive spatiotemporal framework of visual pathway regeneration in zebrafish,establishing a valuable model for elucidating conserved mechanisms of neural repair with translational potential for human vision restoration.展开更多
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases.While rapid progress has been made in regenerative medicine for spinal cord injury that was previou...Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases.While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable,most research in this field has focused on the early phase of incomplete injury.However,the majority of patients have chronic severe injuries;therefore,treatments for these situations are of fundamental importance.The reason why the treatment of complete spinal cord injury has not been studied is that,unlike in the early stage of incomplete spinal cord injury,there are various inhibitors of neural regeneration.Thus,we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies.First,we established a combination therapy of cell transplantation and drug-releasing scaffolds,which contributes to functional recovery after chronic complete transection spinal cord injury,but we found that functional recovery was limited and still needs further investigation.Here,for the further development of the treatment of chronic complete spinal cord injury,we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss,with reference to the literature,which combination of treatments is most effective in achieving functional recovery.展开更多
Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-develo...Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.展开更多
An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal d...An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.展开更多
The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pin...The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.展开更多
Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 ...Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 species) and non_clonal species (103 species), along the 1 670 km Northeast China Transect (NECT) were analyzed. The results showed that P n and WUE appeared to be lower in the east and west ends of NECT, with peaks in the middle. Transpiration was found to be higher in the west end, where most temperate desert species were distributed. On the same site, most clonal species showed higher P n and related physiological variables than non_clonal species. For different growth forms over NECT, e.g. forest trees, shrubs and grasses, meadow steppe shrubs and grasses, typical steppe shrubs and grasses, the meadow steppe and typical steppe grasses, showed higher values of physiological variables than the forest or the desert species. But for the two reproductive plant functional types (PFTs), clonal species had higher physiological variables, with averages of 22%, 15%, 23% and 14% higher than the non_clonal ones for P n , E, g s, and WUE, respectively. Such differences indicated that clonal species might have advantages over non_clonal species in utilizing environmental resources such as light, CO 2, and especially water.展开更多
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common t...Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. ~Ihe current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.展开更多
Livelihoods of farmers and nomads in Tibetan Plateau are severely affected by grassland and herbal resources degeneration. How to help them achieve livelihood diversi- fication is a key sustainable development issue. ...Livelihoods of farmers and nomads in Tibetan Plateau are severely affected by grassland and herbal resources degeneration. How to help them achieve livelihood diversi- fication is a key sustainable development issue. This paper examines livelihood assets, live- lihood diversification level and livelihood strategies of farmers and nomads in 3 regions of eastern transect in Tibetan Plateau. The results show that livelihood diversification is a popular strategy. From high mountain gorge region to mountain plateau region and plateau region, livelihood diversification level is reduced, and livelihood activities and proportion of extended livelihood also decrease. Livelihood assets and livelihood diversification level decrease with the increase of elevation, mainly shown in human assets and natural assets. Livelihood diversification level is highly correlative with livelihood assets, mainly shown in natural assets, human assets and social assets. Livelihood improvement strategies of farmers and nomads are still based on existing livelihood assets, mainly raising livestock and digging herbs, and less farmers and nomads consider off-farm employment or doing business. Nomads in plateau region should learn much from experiences of extended livelihoods of people in high mountain gorge region and mountain plateau region. Therefore, aids of governments should focus on relieving restricted factors of livelihood diversification and help them improve their abilities to build up extended type livelihoods.展开更多
BACKGROUND: Liver surgery has gone through the phases of wedge liver resection, regular resection of hepatic lobes, irregular and local resection, extracorporeal hepatectomy, hemi-extracorporeal hepatectomy and Da Vin...BACKGROUND: Liver surgery has gone through the phases of wedge liver resection, regular resection of hepatic lobes, irregular and local resection, extracorporeal hepatectomy, hemi-extracorporeal hepatectomy and Da Vinci surgical system-assisted hepatectomy. Taking advantage of modern technologies, liver surgery is stepping into an age of precise liver resection. This review aimed to analyze the comprehensive application of modern technologies in precise liver resection. DATA SOURCE: PubMed search was carried out for English-language articles relevant to precise liver resection, liver anatomy, hepatic blood inflow blockage, parenchyma transection, and down-staging treatment. RESULTS: The 3D image system can imitate the liver operation procedures, conduct risk assessment, help to identify the operation feasibility and confirm the operation scheme. In addition, some techniques including puncture and injection of methylene blue into the target Glisson sheath help to precisely determine the resection. Alternative methods such as Pringle maneuver are helpful for hepatic blood inflow blockage in precise liver resection. Moreover, the use of exquisite equipment for liver parenchyma transection, such as cavitron ultrasonic surgical aspirator, ultrasonic scalpel, Ligasure and Tissue Link is also helpful to reduce hemorrhage in liver resection, or even operate exsanguinous liver resection without blocking hepatic blood flow. Furthermore, various down-staging therapies including transcatheter arterial chemoembolization and radio-frequency ablation were appropriate for unresectable cancer, which reverse the advanced tumor back to early phase by local or systemic treatment so that hepatectomy or liver transplantation is possible.CONCLUSIONS: Modern technologies mentioned in this paper are the key tool for achieving precise liver resection and can effectively lead to maximum preservation of anatomical structural integrity and functions of the remnant liver. In addition, large randomized trials are needed to evaluate the usefulness of these technologies in patients with hepatocellular carcinoma who have undergone precise liver resection.展开更多
The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clin...The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps,which prevent regenerating axons reaching the distal nerve.Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins,Slits,Ephrins and Semaphorins.Several recent studies have indicated key roles of Netrin1,Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury.Inside the nerve bridge,nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2.EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump.Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1;within Schwann cells,Robo1 expression is also Sox2-dependent.Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge.In addition to the Slit3/Robo1 signalling system,migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor.It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap.Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps.Therefore,understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural tissue for more effective peripheral nerve repair.展开更多
Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is relat...Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is related to anti-oxidative stress is not clear. To reveal its mechanism, we established the optic nerve transection injury model by transecting 1 mm behind the left eyeball of adult male Sprague-Dawley rats. The rats received an intraperitoneal injection of etomidate(4 mg/kg) once per day for 7 days. The results showed that etomidate significantly enhanced the number of retinal ganglion cells retrogradely labeled with Fluorogold at 7 days after optic nerve transection. Etomidate also significantly reduced the levels of nitric oxide and malonaldehyde in the retina and increased the level of glutathione at 12 hours after optic nerve transection. Thus, etomidate can protect retinal ganglion cells after optic nerve transection in adult rats by activating an anti-oxidative stress response. The study was approved by the Animal Ethics Committee at Air Force Medical University, China(approval No. 20180305) on March 5, 2018.展开更多
Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical stati...Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical statistics, gray relational analysis and spatial analysis functions of GIS) to analyze the relations of temperature variability with topography, latitude and longitude. Moreover, the rank of gray correlation between temperature variability and elevation, longitude, latitude, topographic position and surface roughness also was meas- ured. These results indicated: (1) The elevation affected temperature variability most obviously, followed by latitude, and longitude. The slope of the linear regression between temperature change rate and elevation, latitude and longitude was 0.4142, 0.0293 and -0.3270, respectively (2) The rank of gray correlation between temperature change rate and geographic factors was elevation 〉 latitude 〉 surface roughness 〉 topographic position 〉 longitude. The gray correla- tion degree between temperature change rate and elevation was 0.865, followed by latitude with 0.796, and longitude with 0.671. (3) The rate of temperature change enhanced with the increase of elevation. Especially, the warming trend was significant in the plateau and mountain areas of western Sichuan, and mountain and valley areas of southwestern Sichuan (with the warming rate of 0.74℃/10a during the 1990s). However, there was a weak warming trend in Sichuan Basin and its surrounding low mountain and hilly areas. (4) The effects of latitude on temperature change rate presented the specific regulation, which the warming rate of low-latitude areas was more significant than that of high-latitude areas. However, they were consistent with the regulation that the increasing of low temperature controlled most of the warming trend, due to the effects of terrain and sically, temperature variability along longitude elevation on annual mean temperature. (5) Ba- direction resulted from the regular change of elevation along longitude. It was suggested that, in Sichuan-Chongqing Region, special features of temperature variability largely depended on the terrain complexity (e.g., undulations, mutations and roughness). The elevation level controlled only high or low annual mean temperature and the range of temperature change rate in the macro sense.展开更多
From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). B...From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). Based on these samples, we studied the geographical distribution patterns of vegetable water use efficiency (WUE) and nitrogen use efficiency (NUE), and analyzed their relationship with environmental factors. The vegetable WUE and NUE were calculated through the measurement of foliar δ 13C and C/N of predominant species, respectively. The results showed: (1) vegetable WUE, ranging from 2.13 to 28.67 mg C g-1 H2O, increased linearly from south to north in the representative forest ecosystems along the NSTEC, while vegetable NUE showed an opposite trend, increasing from north to south, ranging from 12.92 to 29.60 g C g-1 N. (2) Vegetable WUE and NUE were dominantly driven by climate and significantly affected by soil nutrient factors. Based on multiple stepwise regression analysis, mean annual temperature, soil phosphorus concentration, and soil nitrogen concentration were responding for 75.5% of the variations of WUE (p0.001). While, mean annual precipitation and soil phosphorus concentration could explain 65.7% of the change in vegetable NUE (p0.001). Moreover, vegetable WUE and NUE would also be seriously influenced by atmospheric nitrogen deposition in nitrogen saturated ecosystems. (3) There was a significant trade-off relationship between vegetable WUE and NUE in the typical forest ecosystems along the NSTEC (p0.001), indicating a balanced strategy for vegetation in resource utilization in natural forest ecosystems along the NSTEC. This study suggests that global change would impact the resource use efficiency of forest ecosystems. However, vegetation could adapt to those changes by increasing the use efficiency of shortage resource while decreasing the relatively ample one. But extreme impacts, such as heavy nitrogen deposition, would break this trade-off mechanism and give a dramatic disturbance to the ecosystem biogeochemical cycle.展开更多
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trend...The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05 –0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55(mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs.1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth.展开更多
Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific...Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific leaf area(SLA),and leaf dry matter content(LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China(NSTEC) between July and August 2013,and also calculated the community weighted means(CWM) of leaf traits by determining the relative dominance of each species.Our results showed that,for all species,the means(± SE) of LA,LT,SLA,and LDMC were 2860.01 ± 135.37 mm2,0.17 ± 0.003 mm,20.15 ± 0.43 m2 kg–1,and 316.73 ± 3.81 mg g–1,respectively.Furthermore,latitudinal variation in leaf traits differed at the species and community levels.Generally,at the species level,SLA increased and LDMC decreased as latitude increased,whereas no clear latitudinal trends among LA or LT were found,which could be the result of shifts in plant functional types.When scaling up to the community level,more significant spatial patterns of leaf traits were observed(R2 = 0.46–0.71),driven by climate and soil N content.These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future,and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits.展开更多
Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation,the passage of nutrients and oxygen,and the discharge of metabolites.In this study,a por...Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation,the passage of nutrients and oxygen,and the discharge of metabolites.In this study,a porous collagen scaffold with axially-aligned luminal conduits was prepared.In vitro biocompatibility analysis of the collagen scaffold revealed that it enhances the activity of neural stem cells and promotes cell extension,without affecting cell differentiation.The collagen scaffold loaded with neural stem cells improved the hindlimb motor function in the rat model of T8 complete transection and promoted nerve regeneration.The collagen scaffold was completely degraded in vivo within 5 weeks of implantation,exhibiting good biodegradability.Rectal temperature,C-reactive protein expression and CD68 staining demonstrated that rats with spinal cord injury that underwent implantation of the collagen scaffold had no notable inflammatory reaction.These findings suggest that this novel collagen scaffold is a good carrier for neural stem cell transplantation,thereby enhancing spinal cord repair following injury.This study was approved by the Animal Ethics Committee of Nanjing Drum Tower Hospital(the Affiliated Hospital of Nanjing University Medical School),China(approval No.2019AE02005)on June 15,2019.展开更多
基金supported by awards from the EPSRC Centre for Doctoral Training in Regenerative Medicine(EP/L014904/1,to JW)an NHS bursary(to RHB)an EPSRC Healthcare Technologies award(EP/T013885/1,to DMC)。
文摘Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies.Biomaterial therapies show promise as medical materials for neural repair through immunomodulation,structural support,and delivery of therapeutic biomolecules.However,a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.We have deployed a two-dimensional,high-density multicellular cortical brain sheet to develop a facile model of injury(macrotransection/scratch wound)in vitro.The model encompasses the major neural cell types involved in pathological responses post-injury.Critically,we observed hallmark pathological responses in injury foci including cell scarring,immune cell infiltration,precursor cell migration,and shortrange axonal sprouting.Delivering test magnetic particles to evaluate the potential of the model for biomaterial screening shows a high uptake of introduced magnetic particles by injury-activated immune cells,mimicking in vivo findings.Finally,we proved it is feasible to create reproducible traumatic injuries in the brain sheet(in multielectrode array devices in situ)characterized by focal loss of electrical spiking in injury sites,offering the potential for longer term,electrophysiology plus histology assays.To our knowledge,this is the first in vitro simulation of transecting injury in a two-dimensional multicellular cortical brain cell sheet,that allows for combined histological and electrophysiological readouts of damage/repair.The patho-mimicry and adaptability of this simplified model of brain injury could benefit the testing of biomaterial therapeutics in regenerative neurology,with the option for functional electrophysiological readouts.
文摘This study aims to investigate the effect of non-transecting anastomotic urethroplasty for treatment of posterior urethral stricture. A total of 23 patients with traumatic posterior urethral stricture were enrolled and then divided into two groups. In one group, 12 patients underwent non-transecting anastomotic urethroplasty. In the other group, 11 patients underwent conventional posterior urethra end-to-end anastomosis. The effect of operation was evaluated using the following parameters: the bleeding amount during operation, operation time, IIEF-5 scores after operation, maximum flow rate (Qmax), and rating scale of quality of life (QoL). The comparison between the conventional posterior urethra end-to-end anastomosis group and the non-transecting anastomotic urethroplasty group showed no significant difference with regard to average operation time. However, a significant difference was observed between the groups with regard to the bleeding amount during operation. The patients in the group of uon-transecting anastomotic urethroplasty urinated smoothly after the removal of catheter. Meanwhile, one patient from the group of conventional posterior urethra end-to-end anastomosis had difficulty urinating after the removal of catheter. Furthermore, significant differences in the operation time, bleeding amount during operation, IIEF-5 scores after operation, and rating scale of QoL were observed, whereas no significant difference was observed between urine flow rates of the two groups after operation. Overall, non-transecting anastomotic urethroplasty is effective for posterior urethra reconstruction, and it can reduce the occurrence rate of erectile dysfunction after operation.
基金financially supported by the National Natural Science Foundation of China,Nos.82172104(to CX),81873767(to HZ)a grant from Jiangsu Provincial Research Hospital,Nos.YJXYY202204(to HZ),YJXYY202204-ZD04(to HZ)+5 种基金a grant from Jiangsu Provincial Key Medical CenterJiangsu Provincial Medical Innovation Center,No.CXZX202212Jiangsu Provincial Medical Key Discipline,No.ZDXK202240the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Technology Project of Nantong,No.MS22022008(to HZ)Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.SJCX21_1457(to WW)。
文摘Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
基金supported by the Slovenian Research and Innovation Agency(grant numbers ARIS P1-0236,ARIS P6-0101,ARIS J6-2592).
文摘The article deals with forest communities that develop on small surfaces on steep gradients of the geomorphologically diverse landscape of the Kras plateau.They appear in small depressions called dolines,where a steep gradient of ecological conditions appears over a small spatial scale.We tried to detect the turnover of forest communities on this small scale and steep gradient with small plots(microplots)of 4 m^(2)arranged in a continuous transect.We sampled only the ground layer and estimated the cover of each vascular plant species.The main problem was that we could not sample vegetation plots in standard sizes,which would allow a standard classification procedure.We built an expert system based on all of the relevant standard vegetation plots from the region and applied this system on a microplot matrix.We classified one third of microplots in this way,but the remainder were classified by semi-supervised k-means clustering.We thus established 8 communities that appear in dolines and compared their characteristics and ecological conditions by Ellenberg indicator values.Our results show that oak-hornbeam forests can be found in the bottom of dolines.Towards the bottom of deeper dolines,mesophilous ravine forests dominated by sycamore on rocky places,and sessile oak forests on deeper soils appear.On lower slopes,thermophilous ravine forests dominated by limes appear on rocky places.Upper slopes are dominated by Turkey oak,hophornbeam-pubescent oak forests and shrub formations.Turkey oak forests can be found on rather deeper soils than hophornbeam-pubescent oak forests.At the top,hophornbeam-pubescent oak forests can be found that build the zonal vegetation of the region.On rock walls vegetation of rock crevices can be found.The high biodiversity of the region supports the idea that diverse karstic features might have the potential for formation of refugia in future foreseen climate change,related to the potential of karstic relief to create diverse climatic conditions.
基金supported by National Key R&D Program of China(2021YFA1101200)National Natural Science Foundation of China(82171048+6 种基金81800842)Key R&D Program of Zhejiang Province(2021C03065)Key R&D Program of Wenzhou Eye Hospital(YNZD1201902)Key R&D Program of Wenzhou(ZY2022021)R&D Program of Wenzhou(H20220008)Research Initiation Funds from Wenzhou Eye Hospital(KYQD20221203)China Postdoctoral Science Foundation(2023M742674)。
文摘In adult mammals,optic nerve injury leads to irreversible vision loss due to its extremely limited regenerative capacity.In contrast,adult zebrafish possess a robust capacity for spontaneous visual system regeneration,although the spatiotemporal coordination of recovery across the retina,optic nerve,and brain remains poorly understood.In the present study,the regenerative dynamics following optic nerve transection were systematically characterized in adult zebrafish over a 5 week period using hematoxylin-eosin staining,immunohistochemistry,transmission electron microscopy,single-cell RNA sequencing,and optokinetic response(OKR)behavioral assessments.At 1 week post-injury(1 wpi),retinal ganglion cell depletion was evident but showed significant recovery by 2 wpi.Concurrently,the injured optic nerve displayed a marked increase in diameter and cell number at 2 wpi,including widespread expression of proliferating cell nuclear antigen,consistent with heightened proliferative activity.Single-cell transcriptomic profiling at 2 wpi revealed five principal cell populations:fibroblasts,mural cells,immune cells,mature oligodendrocytes,and myelin-forming oligodendrocytes.By 4-5 wpi,remyelination within the optic nerve and re-establishment of synaptic architecture in the optic tectum were strongly correlated with functional restoration of OKR behavior.These findings provide a comprehensive spatiotemporal framework of visual pathway regeneration in zebrafish,establishing a valuable model for elucidating conserved mechanisms of neural repair with translational potential for human vision restoration.
文摘Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases.While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable,most research in this field has focused on the early phase of incomplete injury.However,the majority of patients have chronic severe injuries;therefore,treatments for these situations are of fundamental importance.The reason why the treatment of complete spinal cord injury has not been studied is that,unlike in the early stage of incomplete spinal cord injury,there are various inhibitors of neural regeneration.Thus,we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies.First,we established a combination therapy of cell transplantation and drug-releasing scaffolds,which contributes to functional recovery after chronic complete transection spinal cord injury,but we found that functional recovery was limited and still needs further investigation.Here,for the further development of the treatment of chronic complete spinal cord injury,we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss,with reference to the literature,which combination of treatments is most effective in achieving functional recovery.
基金Under the auspices of National Natural Science Foundation of China(No.41929002)Science and Technology Department of Sichuan Province(No.2021YFS0338)。
文摘Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.
基金This paper was supported by the National Natural Sci-ence Foundation of China (Grant No. 40371001) and the Youth Foundation of Beijing Normal University
文摘An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.
文摘The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.
文摘Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 species) and non_clonal species (103 species), along the 1 670 km Northeast China Transect (NECT) were analyzed. The results showed that P n and WUE appeared to be lower in the east and west ends of NECT, with peaks in the middle. Transpiration was found to be higher in the west end, where most temperate desert species were distributed. On the same site, most clonal species showed higher P n and related physiological variables than non_clonal species. For different growth forms over NECT, e.g. forest trees, shrubs and grasses, meadow steppe shrubs and grasses, typical steppe shrubs and grasses, the meadow steppe and typical steppe grasses, showed higher values of physiological variables than the forest or the desert species. But for the two reproductive plant functional types (PFTs), clonal species had higher physiological variables, with averages of 22%, 15%, 23% and 14% higher than the non_clonal ones for P n , E, g s, and WUE, respectively. Such differences indicated that clonal species might have advantages over non_clonal species in utilizing environmental resources such as light, CO 2, and especially water.
基金supported by a doctoral fellowship from the ‘Conseil Régional du Limousin’ to MC
文摘Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. ~Ihe current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
基金The National Basic Research Program of China, No.2005CB422006 National Natural Science Foundation of China, No.40601006
文摘Livelihoods of farmers and nomads in Tibetan Plateau are severely affected by grassland and herbal resources degeneration. How to help them achieve livelihood diversi- fication is a key sustainable development issue. This paper examines livelihood assets, live- lihood diversification level and livelihood strategies of farmers and nomads in 3 regions of eastern transect in Tibetan Plateau. The results show that livelihood diversification is a popular strategy. From high mountain gorge region to mountain plateau region and plateau region, livelihood diversification level is reduced, and livelihood activities and proportion of extended livelihood also decrease. Livelihood assets and livelihood diversification level decrease with the increase of elevation, mainly shown in human assets and natural assets. Livelihood diversification level is highly correlative with livelihood assets, mainly shown in natural assets, human assets and social assets. Livelihood improvement strategies of farmers and nomads are still based on existing livelihood assets, mainly raising livestock and digging herbs, and less farmers and nomads consider off-farm employment or doing business. Nomads in plateau region should learn much from experiences of extended livelihoods of people in high mountain gorge region and mountain plateau region. Therefore, aids of governments should focus on relieving restricted factors of livelihood diversification and help them improve their abilities to build up extended type livelihoods.
基金supported by grants from the National Natural Science Foundation of China (81172095, 81171135 and 81200324)Bureau of Health Medical Scientific Research Foundation of Hainan Province (Qiongwei 2012 PT-70)China Postdoctoral Science Foundation funded project (2012m521875)
文摘BACKGROUND: Liver surgery has gone through the phases of wedge liver resection, regular resection of hepatic lobes, irregular and local resection, extracorporeal hepatectomy, hemi-extracorporeal hepatectomy and Da Vinci surgical system-assisted hepatectomy. Taking advantage of modern technologies, liver surgery is stepping into an age of precise liver resection. This review aimed to analyze the comprehensive application of modern technologies in precise liver resection. DATA SOURCE: PubMed search was carried out for English-language articles relevant to precise liver resection, liver anatomy, hepatic blood inflow blockage, parenchyma transection, and down-staging treatment. RESULTS: The 3D image system can imitate the liver operation procedures, conduct risk assessment, help to identify the operation feasibility and confirm the operation scheme. In addition, some techniques including puncture and injection of methylene blue into the target Glisson sheath help to precisely determine the resection. Alternative methods such as Pringle maneuver are helpful for hepatic blood inflow blockage in precise liver resection. Moreover, the use of exquisite equipment for liver parenchyma transection, such as cavitron ultrasonic surgical aspirator, ultrasonic scalpel, Ligasure and Tissue Link is also helpful to reduce hemorrhage in liver resection, or even operate exsanguinous liver resection without blocking hepatic blood flow. Furthermore, various down-staging therapies including transcatheter arterial chemoembolization and radio-frequency ablation were appropriate for unresectable cancer, which reverse the advanced tumor back to early phase by local or systemic treatment so that hepatectomy or liver transplantation is possible.CONCLUSIONS: Modern technologies mentioned in this paper are the key tool for achieving precise liver resection and can effectively lead to maximum preservation of anatomical structural integrity and functions of the remnant liver. In addition, large randomized trials are needed to evaluate the usefulness of these technologies in patients with hepatocellular carcinoma who have undergone precise liver resection.
文摘The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps,which prevent regenerating axons reaching the distal nerve.Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins,Slits,Ephrins and Semaphorins.Several recent studies have indicated key roles of Netrin1,Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury.Inside the nerve bridge,nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2.EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump.Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1;within Schwann cells,Robo1 expression is also Sox2-dependent.Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge.In addition to the Slit3/Robo1 signalling system,migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor.It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap.Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps.Therefore,understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural tissue for more effective peripheral nerve repair.
基金supported by the National Natural Science Foundation of China,No.81670846(to MMW)and 81470631(to SWY)the Natural Science Foundation of Shaanxi Province of China,No.2016SF-171(to MMW)the National Basic Research Program of China,No.2014CB542202(to SWY)
文摘Our previous studies revealed that etomidate, a non-barbiturate intravenous anesthetic agent, has protective effects on retinal ganglion cells within 7 days after optic nerve transection. Whether this process is related to anti-oxidative stress is not clear. To reveal its mechanism, we established the optic nerve transection injury model by transecting 1 mm behind the left eyeball of adult male Sprague-Dawley rats. The rats received an intraperitoneal injection of etomidate(4 mg/kg) once per day for 7 days. The results showed that etomidate significantly enhanced the number of retinal ganglion cells retrogradely labeled with Fluorogold at 7 days after optic nerve transection. Etomidate also significantly reduced the levels of nitric oxide and malonaldehyde in the retina and increased the level of glutathione at 12 hours after optic nerve transection. Thus, etomidate can protect retinal ganglion cells after optic nerve transection in adult rats by activating an anti-oxidative stress response. The study was approved by the Animal Ethics Committee at Air Force Medical University, China(approval No. 20180305) on March 5, 2018.
基金Natural Science Foundation of Chongqing, No.2010JJ0069 Science and Technology Great Special Project on Controlling and Fathering Water Pollution during the National 12th Five-year Plan, No.2012ZX07104-003
文摘Using the daily temperature data of 95 meteorological stations from Sichuan-Chongqing Region and its surrounding areas, this paper adopted these methods (e.g., linear regression, trend coefficient, geographical statistics, gray relational analysis and spatial analysis functions of GIS) to analyze the relations of temperature variability with topography, latitude and longitude. Moreover, the rank of gray correlation between temperature variability and elevation, longitude, latitude, topographic position and surface roughness also was meas- ured. These results indicated: (1) The elevation affected temperature variability most obviously, followed by latitude, and longitude. The slope of the linear regression between temperature change rate and elevation, latitude and longitude was 0.4142, 0.0293 and -0.3270, respectively (2) The rank of gray correlation between temperature change rate and geographic factors was elevation 〉 latitude 〉 surface roughness 〉 topographic position 〉 longitude. The gray correla- tion degree between temperature change rate and elevation was 0.865, followed by latitude with 0.796, and longitude with 0.671. (3) The rate of temperature change enhanced with the increase of elevation. Especially, the warming trend was significant in the plateau and mountain areas of western Sichuan, and mountain and valley areas of southwestern Sichuan (with the warming rate of 0.74℃/10a during the 1990s). However, there was a weak warming trend in Sichuan Basin and its surrounding low mountain and hilly areas. (4) The effects of latitude on temperature change rate presented the specific regulation, which the warming rate of low-latitude areas was more significant than that of high-latitude areas. However, they were consistent with the regulation that the increasing of low temperature controlled most of the warming trend, due to the effects of terrain and sically, temperature variability along longitude elevation on annual mean temperature. (5) Ba- direction resulted from the regular change of elevation along longitude. It was suggested that, in Sichuan-Chongqing Region, special features of temperature variability largely depended on the terrain complexity (e.g., undulations, mutations and roughness). The elevation level controlled only high or low annual mean temperature and the range of temperature change rate in the macro sense.
基金National Natural Science Foundation of China No.30590381 No.31000211 National Basic Research Program of China No.2010CB833504
文摘From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). Based on these samples, we studied the geographical distribution patterns of vegetable water use efficiency (WUE) and nitrogen use efficiency (NUE), and analyzed their relationship with environmental factors. The vegetable WUE and NUE were calculated through the measurement of foliar δ 13C and C/N of predominant species, respectively. The results showed: (1) vegetable WUE, ranging from 2.13 to 28.67 mg C g-1 H2O, increased linearly from south to north in the representative forest ecosystems along the NSTEC, while vegetable NUE showed an opposite trend, increasing from north to south, ranging from 12.92 to 29.60 g C g-1 N. (2) Vegetable WUE and NUE were dominantly driven by climate and significantly affected by soil nutrient factors. Based on multiple stepwise regression analysis, mean annual temperature, soil phosphorus concentration, and soil nitrogen concentration were responding for 75.5% of the variations of WUE (p0.001). While, mean annual precipitation and soil phosphorus concentration could explain 65.7% of the change in vegetable NUE (p0.001). Moreover, vegetable WUE and NUE would also be seriously influenced by atmospheric nitrogen deposition in nitrogen saturated ecosystems. (3) There was a significant trade-off relationship between vegetable WUE and NUE in the typical forest ecosystems along the NSTEC (p0.001), indicating a balanced strategy for vegetation in resource utilization in natural forest ecosystems along the NSTEC. This study suggests that global change would impact the resource use efficiency of forest ecosystems. However, vegetation could adapt to those changes by increasing the use efficiency of shortage resource while decreasing the relatively ample one. But extreme impacts, such as heavy nitrogen deposition, would break this trade-off mechanism and give a dramatic disturbance to the ecosystem biogeochemical cycle.
基金This study was funded by NSFC (No. 40036010), and the Director’s Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.
文摘The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05 –0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55(mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs.1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth.
基金National Natural Science Foundation of China,No.31290221,No.31470506Chinese Academy of Sciences Strategic Priority Research Program,No.XDA05050702Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research,CAS,No.2013RC102
文摘Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific leaf area(SLA),and leaf dry matter content(LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China(NSTEC) between July and August 2013,and also calculated the community weighted means(CWM) of leaf traits by determining the relative dominance of each species.Our results showed that,for all species,the means(± SE) of LA,LT,SLA,and LDMC were 2860.01 ± 135.37 mm2,0.17 ± 0.003 mm,20.15 ± 0.43 m2 kg–1,and 316.73 ± 3.81 mg g–1,respectively.Furthermore,latitudinal variation in leaf traits differed at the species and community levels.Generally,at the species level,SLA increased and LDMC decreased as latitude increased,whereas no clear latitudinal trends among LA or LT were found,which could be the result of shifts in plant functional types.When scaling up to the community level,more significant spatial patterns of leaf traits were observed(R2 = 0.46–0.71),driven by climate and soil N content.These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future,and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits.
基金supported by the National Key Research and Development Program of China,No.2017YFA0104304(to NG)the National Natural Science Foundation of China,Nos.81571213(to BW),81800583(to YYX),81601539(to DM)+2 种基金the Nanjing Medical Science and Technique Development Foundation of China,Nos.QRX17006(to BW),QRX17057(to DM)the Key Project Supported by Medical Science and Technology Development Foundation,Nanjing Department of Health and the Nanjing Medical Science and Innovation Platform of China,No.ZDX16005(to BW)Chongqing Yuzhong District Science and Technology Commission Project of China,No.20140112(to YYC).
文摘Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation,the passage of nutrients and oxygen,and the discharge of metabolites.In this study,a porous collagen scaffold with axially-aligned luminal conduits was prepared.In vitro biocompatibility analysis of the collagen scaffold revealed that it enhances the activity of neural stem cells and promotes cell extension,without affecting cell differentiation.The collagen scaffold loaded with neural stem cells improved the hindlimb motor function in the rat model of T8 complete transection and promoted nerve regeneration.The collagen scaffold was completely degraded in vivo within 5 weeks of implantation,exhibiting good biodegradability.Rectal temperature,C-reactive protein expression and CD68 staining demonstrated that rats with spinal cord injury that underwent implantation of the collagen scaffold had no notable inflammatory reaction.These findings suggest that this novel collagen scaffold is a good carrier for neural stem cell transplantation,thereby enhancing spinal cord repair following injury.This study was approved by the Animal Ethics Committee of Nanjing Drum Tower Hospital(the Affiliated Hospital of Nanjing University Medical School),China(approval No.2019AE02005)on June 15,2019.