Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicin...Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicines. Traditional Chinese medicine holds that Oviductus Ranae can nourish yin, moisten lung and replenish the kidney essence. Meanwhile, activities of Oviductus Ranae such as anti-aging, anti-lipemic, anti-oxidation and anti-fatigue have also been demonstrated by modern phar-macological studies. Previous studies have shown that Oviductus Ranae is mainly composed of proteins, which are up to 50% or more.展开更多
Mungbean (Vigna radiata (L.) Wilczek) is a unique species in its ability to fix atmospheric nitrogen, with early maturity, and relatively good drought resistance. We used 454 sequencing technology for transcriptom...Mungbean (Vigna radiata (L.) Wilczek) is a unique species in its ability to fix atmospheric nitrogen, with early maturity, and relatively good drought resistance. We used 454 sequencing technology for transcriptome sequencing. A total of 150 159 and 142 993 reads produced 5 254 and 6 374 large contigs (〉_500 bp) with an average length of 833 and 853 for Sunhwa and Jangan, respectively. Functional annotation to known sequences yielded 41.34% and 41.74% unigenes for Jangan and Sunhwa. A higher number of simple sequence repeat (SSR) motifs was identified in Jangan (1 630) compared with that of Sunhwa (1 334). A similar SSR distribution pattern was observed in both varieties. A total of 8 249 single nucleotide polymorphisms (SNPs) and indels with 2 098 high-confidence candidates were identified in the two mungbean varieties. The average distance between individual SNPs was -860 bp. Our report demonstrates the utility of transcriptomic data for implementing a functional annotation and development of genetic markers. We also provide large resource sequence data for mungbean improvement programs.展开更多
The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade ...The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.展开更多
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2011BAI03B00)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2011ZX09401-305)
文摘Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicines. Traditional Chinese medicine holds that Oviductus Ranae can nourish yin, moisten lung and replenish the kidney essence. Meanwhile, activities of Oviductus Ranae such as anti-aging, anti-lipemic, anti-oxidation and anti-fatigue have also been demonstrated by modern phar-macological studies. Previous studies have shown that Oviductus Ranae is mainly composed of proteins, which are up to 50% or more.
基金support of the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. 200908FHT020609001)" Rural Development Administration (RDA),Republic of Korea
文摘Mungbean (Vigna radiata (L.) Wilczek) is a unique species in its ability to fix atmospheric nitrogen, with early maturity, and relatively good drought resistance. We used 454 sequencing technology for transcriptome sequencing. A total of 150 159 and 142 993 reads produced 5 254 and 6 374 large contigs (〉_500 bp) with an average length of 833 and 853 for Sunhwa and Jangan, respectively. Functional annotation to known sequences yielded 41.34% and 41.74% unigenes for Jangan and Sunhwa. A higher number of simple sequence repeat (SSR) motifs was identified in Jangan (1 630) compared with that of Sunhwa (1 334). A similar SSR distribution pattern was observed in both varieties. A total of 8 249 single nucleotide polymorphisms (SNPs) and indels with 2 098 high-confidence candidates were identified in the two mungbean varieties. The average distance between individual SNPs was -860 bp. Our report demonstrates the utility of transcriptomic data for implementing a functional annotation and development of genetic markers. We also provide large resource sequence data for mungbean improvement programs.
基金National Key Research and Development Program of China(2019YFA0111300)Thousand Talents Plan,the Guangdong Provincial Pearl River Talents Program(2019QN01Y131)Medical Science and Technology Research Fund of Guangdong Province(A2022112).
文摘The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.