Human cytomegalovirus(HCMV)is a double-strand DNA virus widely infected in human.Circular RNAs(circ RNAs)are non-coding RNAs with most functions of which keep unknown,and the effects of HCMV productive infection on ho...Human cytomegalovirus(HCMV)is a double-strand DNA virus widely infected in human.Circular RNAs(circ RNAs)are non-coding RNAs with most functions of which keep unknown,and the effects of HCMV productive infection on host circ RNA transcriptions remain unclear.In this study,we profiled 283 host circ RNAs that significantly altered by HCMV productive infection in human embryonic lung fibroblasts(HELF)by RNA deep sequencing and bioinformatics analysis.Among these,circ SP100,circ MAP3 K1,circ PLEKHM1,and circ TRIO were validated for their transcriptions and sequences.Furthermore,characteristics of circ SP100 were investigated by RT-q PCR and northern blot.It was implied that circ SP100 was produced from the sense strand of the SP100 gene containing six exons.Kinetics of circ SP100 and SP100 m RNA were significantly different after infection:circ SP100 levels increased gradually along with infection,whereas SP100 m RNA levels increased in the beginning and dropped at 24 h post-infection(hpi).Meanwhile,a total number of 257 proteins,including 10 HCMV encoding proteins,were identified potentially binding to cytoplasmic circ SP100 by RNA antisense purification(RAP)and mass spectrometry.Enrichment analysis showed these proteins were mainly involved in the spliceosome,protein processing,ribosome,and phagosome pathways,suggesting multiple functions of circ SP100 during HCMV infection.展开更多
Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promis...Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promise in augmenting cultivated apple resistance to abiotic stress.Although Alfin-like(ALs)proteins have demonstrated pivotal roles in dicotyledonous plants'response to abiotic stresses,knowledge about AL genes in apple rootstocks is limited,and their functions remain largely elusive.In this study,we identified and characterized 10 MpAL gene members in the apple rootstock genome,confirming their localization within the nucleus.Our investigation revealed the significant regulation of MpALs'expression under drought and abscisic acid(ABA)stresses in M.prunifolia.In this study,one of the members,MpAL1,was selected for further exploration in Arabidopsis and apple to explore its potential function in response to drought and ABA stresses.The results showed that overexpression-MpAL1 transgenic apple calli grew significantly better than WT and MpAL1-RNAi lines,which regulates the accumulation of H_(2)O_(2)and O_(2).-levels.Additionally,transgenic Arabidopsis plants overexpressing MpAL1 exhibited positively regulating antioxidant enzymes activities under stress treatments.Further study showed that silencing MpAL1 in apple plants showed obvious chlorosis in leaves,and accumulation of reactive oxygen species under drought stress.Moreover,our detailed analysis established that MpAL1 regulates several drought and ABA-responsive genes,exerting an influence on their expression in transgenic apple.Collectively,our findings identify MpAL1 as a positive regulator that increases drought stress in apple,shedding light on its potential significance in bolstering drought resistance in this fruit crop.展开更多
Background:Aberrant expression of transcription factors(TFs)is a key mechanism mediating tumor immune escape and therapeutic resistance.The involvement of E26 transformation-specific(ETS)family of TFs in immune regula...Background:Aberrant expression of transcription factors(TFs)is a key mechanism mediating tumor immune escape and therapeutic resistance.The involvement of E26 transformation-specific(ETS)family of TFs in immune regulation is not fully understood.The study aimed to elucidate the function of E-twenty-six variant 4(ETV4)in tumor immune evasion and its potential as a predictive biomarker for immunotherapy in melanoma.Methods:The expression patterns of ETS family TFs were analyzed in melanoma and hepatocellular carcinoma(HCC).Single-cell RNA sequencing(scRNA-seq)was used to dissect the cellular expression and function of ETV4 in the tumor microenvironment.Functional studies and murine models were employed to investigate the role of ETV4 in T cell-mediated tumor killing and tumor growth.The correlation between ETV4 expression level and patient responsiveness to programmed cell death protein 1(PD-1)blockade therapy was evaluated.Results:TFs in the ETS family were found to effectively stratify melanoma and HCC patients into prognostic subgroups.In melanoma,the polyoma enhancer activator 3(PEA3)subfamily,particularly ETV4 and ETV5,showed a negative correlation with immune infiltration.scRNA-seq analysis showed that ETV4 is preferentially expressed in melanoma cells and involves in mediating tumor-immunocyte interactions.Functional studies demonstrated that ETV4 impairs T cell-mediated tumor killing by transcriptionally upregulating programmed death-ligand 1(PD-L1).In immunocompetent murine models,ETV4 downregulation significantly suppressed tumor growth.Furthermore,high ETV4 expression correlated with poor responses to anti-PD-1 therapy.Conclusion:Our findings identify ETV4 as a key transcriptional regulator of immune evasion in melanoma by controlling PD-L1 expression.ETV4 may act as a predictive biomarker for immunotherapy outcomes.展开更多
Background:The regulatory mechanisms governing vasculogenic mimicry(VM)in oral squamous cell carcinoma(OSCC)remain largely undefined.This study aimed to identify critical factors and elucidate the epigenetic mechanism...Background:The regulatory mechanisms governing vasculogenic mimicry(VM)in oral squamous cell carcinoma(OSCC)remain largely undefined.This study aimed to identify critical factors and elucidate the epigenetic mechanisms underlying VM in OSCC.Methods:Bioinformatics analysis was performed utilizing single-cell RNA-seq,bulk RNA-seq,and histone H3 lysine 27 acetylation(H3K27ac)Chromatin Immunoprecipitation(ChIP)-seq data obtained from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.ChIP-qPCR was used to validate the binding of ETS transcription factor ELK4(ELK4)to the dihydrofolate reductase(DHFR)enhancer.In vitro VM formation and invasion of OSCC cells were assessed using Matrigel-based tube formation and Transwell assays,respectively.Results:Elevated expression of VM-related genes predicts unfavorable prognosis in OSCC patients.High-dimensional weighted gene co-expression network analysis(hdWGCNA)identified epithelial subcluster C4 as most strongly associated with VM and metastasis.Three co-expression modules within this subcluster exhibited significant positive correlations with both phenotypic traits.Among the 30 eigengenes from the three modules,DHFR emerged as a key regulator of VM and metastasis.Knockdown or inhibition of DHFR significantly suppressed VM formation and invasion in OSCC cells.Mechanistically,ELK4 activated DHFR transcription through direct binding to its enhancer.DHFR overexpression rescued VM and invasion impairment induced by ELK4 knockdown.Conclusion:DHFR was a pivotal enhancer-regulated gene driving VM and metastasis in OSCC.ELK4 directly binds to DHFR enhancer regions to activate its transcription,thereby promoting these malignant phenotypes.These findings identified the ELK4/DHFR axis as a promising therapeutic target for anti-angiogenic intervention in OSCC.展开更多
Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and g...Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and glia,undergo reactive transformations whose molecular and functional properties are poorly understood2.Here,using multiple transcriptional profiling methods,we investigated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury.展开更多
Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified n...Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified novel kinesin light chain 2(KLC2)mutations in CML-myeloid blast phase patients.We aimed to examine the functional role of KLC2 mutations in leukemogenesis.Methods:To evaluate the biological role of KLC2 mutants(MT)in CML cells,we expressed KLC2-MT in different human CML cell lines harboring BCR::ABL1 and performed immunoblot,immunofluorescence,cell proliferation,differentiation,and apoptosis;Tyrosine kinase inhibitor(TKI)-drug activities;and clonogenic assays for in vitro functional analyses.We co-expressed KLC2-MT and BCR::ABL1 in mouse bone marrow cells(BMCs)to evaluate their clonogenic and self-renewal abilities ex vivo.Furthermore,we examined tumorigenic activity and drug efficacy in the K562 xenograft model.Results:KLC2-MT overexpression in BCR::ABL1-positive K562 and KU812 CML cells promoted cell proliferation and clonogenic potential,decreased imatinib sensitivity,and reduced apoptosis.Serial colony replating assays revealed that KLC2-MT and BCR::ABL1 co-expression enhanced the self-renewal ability of mouse BMCs with immature morphology.In the K562 xenograft model,KLC2-MT enhanced tumorigenic potential and diminished imatinib efficacy.Further studies reported that KLC2-MT augmented signal transducer and activator of transcription 3(STAT3)activation and nuclear accumulation in imatinib-treated CML cells.KLC2-WT and KLC2-MT interacted with mothers against decapentaplegic homolog 2(SMAD2);however,the latter impaired transforming growth factor-beta(TGF-β)–mediated SMAD2/3 activation while enhancing STAT3 phosphorylation.Conclusions:This study demonstrates the biological and functional importance of KLC2 mutation in CML cells,potentially enabling the development of better treatment strategies for CML patients carrying KLC2 mutations and providing enhanced understanding of the disease progression.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of...5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of apple(Malus×domestica'Gala')when the detached leaves or cultured calli were used as the materials.The expression of MdWRKY71,a WRKY transcription factor(TF)gene was found to be responsive to NaCl as well as ALA treatment.Functional analysis showed that overexpressing(OE)-MdWRKY71 significantly improved the salt tolerance of the transgenic apple,while RNA interfering(RNAi)-MdWRKY71 reduced the salt tolerance.However,exogenous ALA alleviated the salt damage in the RNAi-MdWRKY71 apple.When MdWRKY71 was transferred into tobacco,the salt tolerance of transgenic plants was enhanced,which was further improved by exogenous ALA.Subsequently,MdWRKY71 bound to the W-box of promoters of MdSOS2,MdNHX1,MdCLC-g,MdSOD1,MdCAT1 and MdAPX1,transcriptionally activating the gene expressions.Since the genes are responsible for Na+and Cl-transport and antioxidant enzyme activity respectively,it can be concluded that MdWRKY71,a new TF,is involved in ALA-improved salt tolerance by regulating ion homeostasis and redox homeostasis.These results provided new insights into the transcriptional regulatory mechanism of ALA in enhancing apple salt tolerance.展开更多
The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triti...The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triticina(Pt).However,the molecular mechanism of its interaction with a Pt effector is not clear.We found that Pt effector Pt-1234 interacts with TaNAC069 to subvert host immunity during Pt infection.Quantitative real-time PCR analysis showed that expression of Pt-1234 was significantly upregulated during the early stage of Pt infection.Protein-mediated cell death assays in wheat showed that the Pt-1234 protein was unable to induce cell death in wheat near-isogenic lines carrying different leaf rust resistance genes,whereas it suppressed BAX-induced cell death in leaves of Nicotiana benthamiana.Silencing of Pt-1234 by host-induced gene silencing(HIGS)significantly reduced the virulence of Pt in the susceptible wheat variety Thatcher.The C subdomain of TaNAC069 was responsible for its interaction with Pt-1234,and the E subdomain was required for TaNAC069-mediated defense responses to Pt in planta.These findings indicate that Pt utilizes Pt-1234 to interact with wheat transcription factor TaNAC069 through its C subdomain,thereby modulating wheat immunity.展开更多
Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile fla...Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile flavors of tomatoes is still not clear.Here,we integrated the metabolome and transcriptome of the volatile flavors in tomato fruit to explore the regulatory mechanism of volatile flavor formation,using wild and cultivated tomatoes with significant differences in flavors.A total of 35 volatile flavor compounds were identified,based on the solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS).The content of the volatiles,affecting fruit flavor,significantly increased in the transition from breaker to red ripe fruit stage.Moreover,the total content of the volatiles in wild tomatoes was much higher than that in the cultivated tomatoes.The content variations of all volatile flavors were clustered into 10 groups by hierarchical cluster and Pearson coefficient correlation(PCC)analysis.The fruit transcriptome was also patterned into 10 groups,with significant variations both from the mature green to breaker fruit stage and from the breaker to red ripe fruit stage.Combining the metabolome and the transcriptome of the same developmental stage of fruits by co-expression analysis,we found that the expression level of 1182 genes was highly correlated with the content of volatile flavor compounds,thereby constructing two regulatory pathways of important volatile flavors.One pathway is tetrahydrothiazolidine N-hydroxylase(SlTNH1)-dependent,which is regulated by two transcription factors(TFs)from the bHLH and AP2/ERF families,controlling the synthesis of 2-isobutylthiazole in amino acid metabolism.The other is lipoxygenase(Sl LOX)-dependent,which is regulated by one TF from the HD-Zip family,controlling the synthesis of hexanal and(Z)-2-heptenal in fatty acid metabolism.Dual-luciferase assay confirmed the binding of b HLH and AP2/ERF to their structural genes.The findings of this study provide new insights into volatile flavor formation in tomato fruit,which can be useful for tomato flavor improvement.展开更多
Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomat...Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomato fruit yield.It is necessary to identify transcription factors(TFs)and target genes involved in heat stress response(HSR)signaling cascades in tomato flower buds to improve tomato plant thermotolerance.In this study,we profiled genes expressed in three developmental stages of tomato flower buds.Red and turquoise modules for heat stress(HS)were identified through gene co-expression network analysis,and the genes within these modules were enriched in HS-related pathways.By focusing on the TFs in the two modules,we identified several novel HSR-related TFs,including SlWRKY75,SlMYB117,and SlNAM.Furthermore,homology analysis illustrated a conserved signaling cascade in tomato.Lastly,we identified and experimentally validated four HSF-regulated genes,namely SlGrpE,SlERDJ3A,SlTIL,and SlPOM1,that likely modulate thermotolerance in plants.These results provide a high-resolution atlas of gene expression during tomato flower bud development under HS conditions,which is a valuable resource for uncovering potential regulatory networks associated with the HSR in tomato.展开更多
The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple c...The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.展开更多
The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.Howev...The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
Aegilops speltoides,the closest ancestor of the wheat B subgenome,has been well studied genomically.However,the epigenetic landscape of Ae.speltoides and the effects of epigenetics on its growth and development remain...Aegilops speltoides,the closest ancestor of the wheat B subgenome,has been well studied genomically.However,the epigenetic landscape of Ae.speltoides and the effects of epigenetics on its growth and development remain poorly understood.Here,we present a comprehensive multi-omics atlas of leaves and roots in Ae.speltoides,encompassing transcriptome,DNA methylation,histone modifications,and small RNA profiling.Divergent DNA methylation levels were detected between leaves and roots,and were associated with differences in accumulated 24-nt siRNAs.DNA methylation changes in promoters and gene bodies showed strong connections with altered expression between leaves and roots.Transcriptional regulatory networks(TRN)reconstructed between leaves and roots were driven by tissue-specific TF families.DNA methylation and histone modification act together as switches that shape root and leaf morphogenesis by modulating the binding of tissue-specific TFs to their target genes.The TRNs in leaves and roots reshaped during wheat polyploidization were associated with alterations in epigenetic modi-fications.Collectively,these results not only shed light on the critical contribution of epigenetic regulation in the morphogenesis of leaves and roots in Ae.speltoides but also provide new insights for future investigations into the complex interplay of genetic and epigenetic factors in the developmental biology of common wheat.展开更多
BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear f...BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.展开更多
Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant...Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.展开更多
Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulat...Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulatory function in microglial pyroptosis and involvement in SAE remains unclear.In this study,we demonstrated that OGT deficiency augmented microglial pyroptosis and exacerbated secondary neuronal injury.Furthermore,OGT inhibition impaired cognitive function in healthy mice and accelerated the progression in SAE mice.Mechanistically,OGT-mediated O-GlcNAcylation of ATF2 at Ser44 inhibited its phosphorylation and nuclear translocation,thereby amplifying NLRP3 inflammasome activation and promoting inflammatory cytokine production in microglia in response to LPS/Nigericin stimulation.In conclusion,this study uncovers the critical role of OGT-mediated O-GlcNAcylation in modulating microglial activity through the regulation of ATF2 and thus protects against SAE progression.展开更多
基金supported by the National Natural Science Foundation of China (81672028 and 81371788)。
文摘Human cytomegalovirus(HCMV)is a double-strand DNA virus widely infected in human.Circular RNAs(circ RNAs)are non-coding RNAs with most functions of which keep unknown,and the effects of HCMV productive infection on host circ RNA transcriptions remain unclear.In this study,we profiled 283 host circ RNAs that significantly altered by HCMV productive infection in human embryonic lung fibroblasts(HELF)by RNA deep sequencing and bioinformatics analysis.Among these,circ SP100,circ MAP3 K1,circ PLEKHM1,and circ TRIO were validated for their transcriptions and sequences.Furthermore,characteristics of circ SP100 were investigated by RT-q PCR and northern blot.It was implied that circ SP100 was produced from the sense strand of the SP100 gene containing six exons.Kinetics of circ SP100 and SP100 m RNA were significantly different after infection:circ SP100 levels increased gradually along with infection,whereas SP100 m RNA levels increased in the beginning and dropped at 24 h post-infection(hpi).Meanwhile,a total number of 257 proteins,including 10 HCMV encoding proteins,were identified potentially binding to cytoplasmic circ SP100 by RNA antisense purification(RAP)and mass spectrometry.Enrichment analysis showed these proteins were mainly involved in the spliceosome,protein processing,ribosome,and phagosome pathways,suggesting multiple functions of circ SP100 during HCMV infection.
基金supported by the National Natural Science Foundation of China(Grant Nos.32102311 and 32102338)the China Postdoctoral Science Foundation(Grant No.2021M690129).
文摘Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promise in augmenting cultivated apple resistance to abiotic stress.Although Alfin-like(ALs)proteins have demonstrated pivotal roles in dicotyledonous plants'response to abiotic stresses,knowledge about AL genes in apple rootstocks is limited,and their functions remain largely elusive.In this study,we identified and characterized 10 MpAL gene members in the apple rootstock genome,confirming their localization within the nucleus.Our investigation revealed the significant regulation of MpALs'expression under drought and abscisic acid(ABA)stresses in M.prunifolia.In this study,one of the members,MpAL1,was selected for further exploration in Arabidopsis and apple to explore its potential function in response to drought and ABA stresses.The results showed that overexpression-MpAL1 transgenic apple calli grew significantly better than WT and MpAL1-RNAi lines,which regulates the accumulation of H_(2)O_(2)and O_(2).-levels.Additionally,transgenic Arabidopsis plants overexpressing MpAL1 exhibited positively regulating antioxidant enzymes activities under stress treatments.Further study showed that silencing MpAL1 in apple plants showed obvious chlorosis in leaves,and accumulation of reactive oxygen species under drought stress.Moreover,our detailed analysis established that MpAL1 regulates several drought and ABA-responsive genes,exerting an influence on their expression in transgenic apple.Collectively,our findings identify MpAL1 as a positive regulator that increases drought stress in apple,shedding light on its potential significance in bolstering drought resistance in this fruit crop.
基金funded by the National Natural Science Foundation of China(Grant Nos.82204517 to T.Z.and 82404756 to J.Z.)the Science and Technology Program in Medicine and Health of Zhejiang Province(Grant No.2023KY726 to T.Z.).
文摘Background:Aberrant expression of transcription factors(TFs)is a key mechanism mediating tumor immune escape and therapeutic resistance.The involvement of E26 transformation-specific(ETS)family of TFs in immune regulation is not fully understood.The study aimed to elucidate the function of E-twenty-six variant 4(ETV4)in tumor immune evasion and its potential as a predictive biomarker for immunotherapy in melanoma.Methods:The expression patterns of ETS family TFs were analyzed in melanoma and hepatocellular carcinoma(HCC).Single-cell RNA sequencing(scRNA-seq)was used to dissect the cellular expression and function of ETV4 in the tumor microenvironment.Functional studies and murine models were employed to investigate the role of ETV4 in T cell-mediated tumor killing and tumor growth.The correlation between ETV4 expression level and patient responsiveness to programmed cell death protein 1(PD-1)blockade therapy was evaluated.Results:TFs in the ETS family were found to effectively stratify melanoma and HCC patients into prognostic subgroups.In melanoma,the polyoma enhancer activator 3(PEA3)subfamily,particularly ETV4 and ETV5,showed a negative correlation with immune infiltration.scRNA-seq analysis showed that ETV4 is preferentially expressed in melanoma cells and involves in mediating tumor-immunocyte interactions.Functional studies demonstrated that ETV4 impairs T cell-mediated tumor killing by transcriptionally upregulating programmed death-ligand 1(PD-L1).In immunocompetent murine models,ETV4 downregulation significantly suppressed tumor growth.Furthermore,high ETV4 expression correlated with poor responses to anti-PD-1 therapy.Conclusion:Our findings identify ETV4 as a key transcriptional regulator of immune evasion in melanoma by controlling PD-L1 expression.ETV4 may act as a predictive biomarker for immunotherapy outcomes.
基金supported by Hebei Natural Science Foundation(H2024206476)Medical Science Research Project of Hebei(20240101).
文摘Background:The regulatory mechanisms governing vasculogenic mimicry(VM)in oral squamous cell carcinoma(OSCC)remain largely undefined.This study aimed to identify critical factors and elucidate the epigenetic mechanisms underlying VM in OSCC.Methods:Bioinformatics analysis was performed utilizing single-cell RNA-seq,bulk RNA-seq,and histone H3 lysine 27 acetylation(H3K27ac)Chromatin Immunoprecipitation(ChIP)-seq data obtained from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.ChIP-qPCR was used to validate the binding of ETS transcription factor ELK4(ELK4)to the dihydrofolate reductase(DHFR)enhancer.In vitro VM formation and invasion of OSCC cells were assessed using Matrigel-based tube formation and Transwell assays,respectively.Results:Elevated expression of VM-related genes predicts unfavorable prognosis in OSCC patients.High-dimensional weighted gene co-expression network analysis(hdWGCNA)identified epithelial subcluster C4 as most strongly associated with VM and metastasis.Three co-expression modules within this subcluster exhibited significant positive correlations with both phenotypic traits.Among the 30 eigengenes from the three modules,DHFR emerged as a key regulator of VM and metastasis.Knockdown or inhibition of DHFR significantly suppressed VM formation and invasion in OSCC cells.Mechanistically,ELK4 activated DHFR transcription through direct binding to its enhancer.DHFR overexpression rescued VM and invasion impairment induced by ELK4 knockdown.Conclusion:DHFR was a pivotal enhancer-regulated gene driving VM and metastasis in OSCC.ELK4 directly binds to DHFR enhancer regions to activate its transcription,thereby promoting these malignant phenotypes.These findings identified the ELK4/DHFR axis as a promising therapeutic target for anti-angiogenic intervention in OSCC.
文摘Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and glia,undergo reactive transformations whose molecular and functional properties are poorly understood2.Here,using multiple transcriptional profiling methods,we investigated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury.
基金supported by grants from the Ministry of Science and Technology,Taiwan(MOST108-2314-B-182-006,MOST109-2314-B-182-071:Lee-Yung Shih)the Ministry of Health and Welfare,Taiwan(MOHW110-TDU-B-212-134011:Lee-Yung Shih)+3 种基金Chang Gung Memorial Hospital(CMRPG3D1524,OMRPG3E0031:Lee-Yung Shih)the Grant-in-Aid for the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP19H05656:Seishi Ogawa,22K16320:Yotaro Ochi)the Japan Agency for Medical Research and Development(AMED)(JP19cm0106501h0004,JP19ck0106250h0003:Seishi Ogawa)the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT)(hp200138,hp210167:Seishi Ogawa)。
文摘Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified novel kinesin light chain 2(KLC2)mutations in CML-myeloid blast phase patients.We aimed to examine the functional role of KLC2 mutations in leukemogenesis.Methods:To evaluate the biological role of KLC2 mutants(MT)in CML cells,we expressed KLC2-MT in different human CML cell lines harboring BCR::ABL1 and performed immunoblot,immunofluorescence,cell proliferation,differentiation,and apoptosis;Tyrosine kinase inhibitor(TKI)-drug activities;and clonogenic assays for in vitro functional analyses.We co-expressed KLC2-MT and BCR::ABL1 in mouse bone marrow cells(BMCs)to evaluate their clonogenic and self-renewal abilities ex vivo.Furthermore,we examined tumorigenic activity and drug efficacy in the K562 xenograft model.Results:KLC2-MT overexpression in BCR::ABL1-positive K562 and KU812 CML cells promoted cell proliferation and clonogenic potential,decreased imatinib sensitivity,and reduced apoptosis.Serial colony replating assays revealed that KLC2-MT and BCR::ABL1 co-expression enhanced the self-renewal ability of mouse BMCs with immature morphology.In the K562 xenograft model,KLC2-MT enhanced tumorigenic potential and diminished imatinib efficacy.Further studies reported that KLC2-MT augmented signal transducer and activator of transcription 3(STAT3)activation and nuclear accumulation in imatinib-treated CML cells.KLC2-WT and KLC2-MT interacted with mothers against decapentaplegic homolog 2(SMAD2);however,the latter impaired transforming growth factor-beta(TGF-β)–mediated SMAD2/3 activation while enhancing STAT3 phosphorylation.Conclusions:This study demonstrates the biological and functional importance of KLC2 mutation in CML cells,potentially enabling the development of better treatment strategies for CML patients carrying KLC2 mutations and providing enhanced understanding of the disease progression.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金funded by the Natural Science Foundation of China(Grant Nos.32230097 and 32172512)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2023]+1 种基金the Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization(Grant No.BK20220005)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of apple(Malus×domestica'Gala')when the detached leaves or cultured calli were used as the materials.The expression of MdWRKY71,a WRKY transcription factor(TF)gene was found to be responsive to NaCl as well as ALA treatment.Functional analysis showed that overexpressing(OE)-MdWRKY71 significantly improved the salt tolerance of the transgenic apple,while RNA interfering(RNAi)-MdWRKY71 reduced the salt tolerance.However,exogenous ALA alleviated the salt damage in the RNAi-MdWRKY71 apple.When MdWRKY71 was transferred into tobacco,the salt tolerance of transgenic plants was enhanced,which was further improved by exogenous ALA.Subsequently,MdWRKY71 bound to the W-box of promoters of MdSOS2,MdNHX1,MdCLC-g,MdSOD1,MdCAT1 and MdAPX1,transcriptionally activating the gene expressions.Since the genes are responsible for Na+and Cl-transport and antioxidant enzyme activity respectively,it can be concluded that MdWRKY71,a new TF,is involved in ALA-improved salt tolerance by regulating ion homeostasis and redox homeostasis.These results provided new insights into the transcriptional regulatory mechanism of ALA in enhancing apple salt tolerance.
基金funded by State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2023ZZ-10)the National Natural Science Foundation of China(32172384 and 31501623)+1 种基金the Natural Science Foundation of Hebei(C2020204028)the Science and Technology Research Project of Higher Education of Hebei(ZC2023178).
文摘The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triticina(Pt).However,the molecular mechanism of its interaction with a Pt effector is not clear.We found that Pt effector Pt-1234 interacts with TaNAC069 to subvert host immunity during Pt infection.Quantitative real-time PCR analysis showed that expression of Pt-1234 was significantly upregulated during the early stage of Pt infection.Protein-mediated cell death assays in wheat showed that the Pt-1234 protein was unable to induce cell death in wheat near-isogenic lines carrying different leaf rust resistance genes,whereas it suppressed BAX-induced cell death in leaves of Nicotiana benthamiana.Silencing of Pt-1234 by host-induced gene silencing(HIGS)significantly reduced the virulence of Pt in the susceptible wheat variety Thatcher.The C subdomain of TaNAC069 was responsible for its interaction with Pt-1234,and the E subdomain was required for TaNAC069-mediated defense responses to Pt in planta.These findings indicate that Pt utilizes Pt-1234 to interact with wheat transcription factor TaNAC069 through its C subdomain,thereby modulating wheat immunity.
基金supported by the National Natural Science Foundation of China(Grant Nos.32120103010,32002050)Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile flavors of tomatoes is still not clear.Here,we integrated the metabolome and transcriptome of the volatile flavors in tomato fruit to explore the regulatory mechanism of volatile flavor formation,using wild and cultivated tomatoes with significant differences in flavors.A total of 35 volatile flavor compounds were identified,based on the solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS).The content of the volatiles,affecting fruit flavor,significantly increased in the transition from breaker to red ripe fruit stage.Moreover,the total content of the volatiles in wild tomatoes was much higher than that in the cultivated tomatoes.The content variations of all volatile flavors were clustered into 10 groups by hierarchical cluster and Pearson coefficient correlation(PCC)analysis.The fruit transcriptome was also patterned into 10 groups,with significant variations both from the mature green to breaker fruit stage and from the breaker to red ripe fruit stage.Combining the metabolome and the transcriptome of the same developmental stage of fruits by co-expression analysis,we found that the expression level of 1182 genes was highly correlated with the content of volatile flavor compounds,thereby constructing two regulatory pathways of important volatile flavors.One pathway is tetrahydrothiazolidine N-hydroxylase(SlTNH1)-dependent,which is regulated by two transcription factors(TFs)from the bHLH and AP2/ERF families,controlling the synthesis of 2-isobutylthiazole in amino acid metabolism.The other is lipoxygenase(Sl LOX)-dependent,which is regulated by one TF from the HD-Zip family,controlling the synthesis of hexanal and(Z)-2-heptenal in fatty acid metabolism.Dual-luciferase assay confirmed the binding of b HLH and AP2/ERF to their structural genes.The findings of this study provide new insights into volatile flavor formation in tomato fruit,which can be useful for tomato flavor improvement.
基金supported by grants from the National Natural Science Foundation of China(Grant No.32072571)the 111 Project(Grant No.B17043)the Construction of Beijing Science,and Technology Innovation and Service Capacity in Top Subjects(Grant No.CEFF-PXM2019_014207_000032)。
文摘Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomato fruit yield.It is necessary to identify transcription factors(TFs)and target genes involved in heat stress response(HSR)signaling cascades in tomato flower buds to improve tomato plant thermotolerance.In this study,we profiled genes expressed in three developmental stages of tomato flower buds.Red and turquoise modules for heat stress(HS)were identified through gene co-expression network analysis,and the genes within these modules were enriched in HS-related pathways.By focusing on the TFs in the two modules,we identified several novel HSR-related TFs,including SlWRKY75,SlMYB117,and SlNAM.Furthermore,homology analysis illustrated a conserved signaling cascade in tomato.Lastly,we identified and experimentally validated four HSF-regulated genes,namely SlGrpE,SlERDJ3A,SlTIL,and SlPOM1,that likely modulate thermotolerance in plants.These results provide a high-resolution atlas of gene expression during tomato flower bud development under HS conditions,which is a valuable resource for uncovering potential regulatory networks associated with the HSR in tomato.
基金supported by Research Program for Agricultural Science and Technology Development,Republic of Korea(PJ01570601)the Fellowship Program(PJ01661001)of the National Institute of Agricultural Sciences,Republic of KoreaRural Development Administration,Republic of Korea.
文摘The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.
基金funded by the National Natural Science Foundation of China(Grant Nos.32202502,U21A20230,32070331,32102380 and 32072580)National Key Research and Development Program(Grant No.2018YFD1000800)+3 种基金the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202080001)the Special Fund for Seed Industry of Guangdong Province Rural Revitalization Strategy(Grant No.2022-NPY00-024)Tibet Autonomous Region of Lhasa City Science and Technology Project(Grant No.LSKJ202310)the Science and Technology Project of Bijie City(Grant No.BKK2022-3)。
文摘The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金supported by the National Key Research and Development Program of China(2023YFD1200403).
文摘Aegilops speltoides,the closest ancestor of the wheat B subgenome,has been well studied genomically.However,the epigenetic landscape of Ae.speltoides and the effects of epigenetics on its growth and development remain poorly understood.Here,we present a comprehensive multi-omics atlas of leaves and roots in Ae.speltoides,encompassing transcriptome,DNA methylation,histone modifications,and small RNA profiling.Divergent DNA methylation levels were detected between leaves and roots,and were associated with differences in accumulated 24-nt siRNAs.DNA methylation changes in promoters and gene bodies showed strong connections with altered expression between leaves and roots.Transcriptional regulatory networks(TRN)reconstructed between leaves and roots were driven by tissue-specific TF families.DNA methylation and histone modification act together as switches that shape root and leaf morphogenesis by modulating the binding of tissue-specific TFs to their target genes.The TRNs in leaves and roots reshaped during wheat polyploidization were associated with alterations in epigenetic modi-fications.Collectively,these results not only shed light on the critical contribution of epigenetic regulation in the morphogenesis of leaves and roots in Ae.speltoides but also provide new insights for future investigations into the complex interplay of genetic and epigenetic factors in the developmental biology of common wheat.
基金Supported by Xi’an Science and Technology Plan Project,No.23YXYJ0162Shaanxi Province Traditional Chinese Medicine Research and Innovation Talent Plan Project,No.TZKN-CXRC-16+2 种基金Project of Shaanxi Administration of Traditional Chinese Medicine,No.SZYKJCYC-2025-JC-010Shaanxi Province Key Research and Development Plan Project-Social Development Field,No.S2025-YF-YBSF-0391the Science and Technology Innovation Cultivation Program of Longhua Hospital affiliated to Shanghai University of Chinese Medicine,No.YD202220。
文摘BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.
基金supported by the National Natural Science Foundation of China(Nos.82171552 and 82170479)the Natural Science Foundation of Shanghai Ctiy(No.21ZR1457500)the Science and Technology Bureau of Shanghai Putuo District(No.ptkwws202102).
文摘Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.
基金supported by the Jiangsu Provincial Medical Key Discipline(Laboratory)Cultivation Unit(JSDW202249)the Natural Science Foundation of Jiangsu Province(BK20211108)+4 种基金a Scientific Research Project of the Health Commission of Nantong(MS2023035)Nantong Natural Science Foundation(JC2023114)the Scientific Research Innovation Team of Kangda College of Nanjing Medical University(KD2022KYCXTD005)Nantong University Clinical Medicine Special Project(2022JY005)the Postgraduate Research&Practice Innovation Program of Jiangsu province(KYCX23_3416).
文摘Microglial pyroptosis and neuroinflammation have been implicated in the pathogenesis of sepsis-associated encephalopathy(SAE).OGT-mediated O-GlcNAcylation is involved in neurodevelopment and injury.However,its regulatory function in microglial pyroptosis and involvement in SAE remains unclear.In this study,we demonstrated that OGT deficiency augmented microglial pyroptosis and exacerbated secondary neuronal injury.Furthermore,OGT inhibition impaired cognitive function in healthy mice and accelerated the progression in SAE mice.Mechanistically,OGT-mediated O-GlcNAcylation of ATF2 at Ser44 inhibited its phosphorylation and nuclear translocation,thereby amplifying NLRP3 inflammasome activation and promoting inflammatory cytokine production in microglia in response to LPS/Nigericin stimulation.In conclusion,this study uncovers the critical role of OGT-mediated O-GlcNAcylation in modulating microglial activity through the regulation of ATF2 and thus protects against SAE progression.