To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The...To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The proposed system formulates multiple private data access control strategies,and realizes data trading and sharing through on-chain transactions,which makes transaction records transparent and immutable.In our system,the private data are encrypted,and the role-based account model ensures that access to the data requires owner’s authorization.Moreover,a new consensus protocol named Proof of Transactions(PoT)proposed by ourselves has been used to improve consensus efficiency.The value of Ecare is not only that it aggregates telemedicine,data transactions,and other features,but also that it translates these actions into transaction events stored in the blockchain,making them transparent and immutable to all participants.The proposed system can be extended to more general big data privacy protection and data transaction scenarios.展开更多
On the basis of analyzing essence of land ticket system of Chongqing Municipality and its transaction process,this paper studies the relationship between government and farmers and between city and countryside,and dis...On the basis of analyzing essence of land ticket system of Chongqing Municipality and its transaction process,this paper studies the relationship between government and farmers and between city and countryside,and discusses the drawbacks of land ticket system in Chongqing Municipality. Results show that inherent drawbacks of land ticket system and wrong guidance of policies lead to suspicion of land ticket system occupying rural resources. Interregional exploitation and intergenerational exploitation are inherent mechanism of city exploiting countryside. Finally,it proposes increasing construction land index to satisfy demand of new socialist countryside construction primarily,to ensure rural social stability; Later,use land ticket index to fill the gap of construction land in economically developed areas,so as to alleviate conflict of urban land use and maximize circulation value of rural construction land. It is expected to provide theoretical reference for relevant departments to regulate land ticket transaction system and realize the harmonious development,between urban and rural areas.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementation...Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementations made significant performance degradation on NUMA system because they ignored the slower remote memory access. To solve this problem, a latency-based conflict detection and a forecasting-based conflict prevention method were proposed. Using these techniques, the NUMA aware TM system was presented. By reducing the remote memory access and the abort rate of transaction, the experiment results show that the NUMA aware strategies present good practical TM performance on NUMA system.展开更多
This paper deals with how to implement AMBA bus transaction level modeling in SystemC.There are two main techniques used in the whole modeling process,which consist of starting the platform modeling at the transaction...This paper deals with how to implement AMBA bus transaction level modeling in SystemC.There are two main techniques used in the whole modeling process,which consist of starting the platform modeling at the transaction level and using the uniformed modeling language—System C.According to the concepts of interface,port and hierarchical channel introduced in SystemC 2.0,the system of master-channel(AMBA bus)slave is created as the architecture of the AMBA bus transaction level model,which can make it more extendable.The port and interface classes of the model that are prone to program are defined in accordance with the SoC hierarchical design methodology.In addition,method calls,not signal communication,are used between different modules in the model,so the higher-level abstraction is achieved and the simulation performance is improved.The AMBA bus transaction level model is analyzed and certified by simulation experiment,and proved to be completely compliant to the AMBA specification 2.0.展开更多
This paper presents a new transaction method in terms of which deals are concluded by competitive prices, and indicates its design on multiuser platform, especially the research of synchronization and vieing for power...This paper presents a new transaction method in terms of which deals are concluded by competitive prices, and indicates its design on multiuser platform, especially the research of synchronization and vieing for powers. The system was programmed with SCO FOXBASE 210, C language and Shell. The result of nearly two year′s use proved that the transaction method and its accomplishments are all practicable.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
Accounting Information System(AIS),which is the foundation of any enterprise resource planning(ERP)system,is often built as centralized system.The technologies that allow the Internet-of-Value,which is built onfive asp...Accounting Information System(AIS),which is the foundation of any enterprise resource planning(ERP)system,is often built as centralized system.The technologies that allow the Internet-of-Value,which is built onfive aspects that are network,algorithms,distributed ledger,transfers,and assets,are based on blockchain.Cryptography and consensus protocols boost the blockchain plat-form implementation,acting as a deterrent to cyber-attacks and hacks.Blockchain platforms foster innovation among supply chain participants,resulting in ecosys-tem development.Traditional business processes have been severely disrupted by blockchains since apps and transactions that previously required centralized struc-tures or trusted third-parties to authenticate them may now function in a decentra-lized manner with the same level of assurance.Because a blockchain split in AIS may easily lead to double-spending attacks,reducing the likelihood of a split has become a very important and difficult research subject.Reduced block relay time between the nodes can minimize the block propagation time of all nodes,resulting in better Bitcoin performance.In this paper,three problems were addressed on transaction and block propagation mechanisms in order to reduce the likelihood of a split.A novel algorithm for blockchain is proposed to reduce the total pro-pagation delay in AIS transactions.Numerical results reveal that,the proposed algorithm performs better and reduce the transaction delay in AIS as compared with existing methods.展开更多
In recent decades, day-to-day lifestyle requires online payments as easy and simple solutions to several financial transactions, which makes the concept of Electronic payment Systems very popular in the growth of a ca...In recent decades, day-to-day lifestyle requires online payments as easy and simple solutions to several financial transactions, which makes the concept of Electronic payment Systems very popular in the growth of a cashless society. In fact, cashless transactions through simple mobile apps are not merely a concept anymore rather are implemented robustly and being used extensively. On the dark side, obvious financial benefits are making these apps vulnerable to being attacked, which can be successful through security breaches. These cybersecurity issues need to be traced out and resolved to make the financial transactions through an app secure and trustworthy. In this paper, several related papers are analyzed to trace out possible cybersecurity issues in the domain of Electronic Transaction System. The objective is to establish sufficient theoretical background to propose methodologies for measuring security issues and also identify the security strength of any FinTech application and provide standard security metrics.展开更多
Real-Time Transaction Processing System(RTTPS)is a type of e-government that processes documents using electronic communication technology.In this time of the pandemic,the study contributes to the necessity to perform...Real-Time Transaction Processing System(RTTPS)is a type of e-government that processes documents using electronic communication technology.In this time of the pandemic,the study contributes to the necessity to perform more processing online and less face-to-face.In terms of retrieving information,a comparison between Porter’s Stemming algorithm and this study was performed.The study aims to design a database that will serve as a repository of information in retrieving information and also to examine the efficacy of the real-time process in securing the government requirements using the Technology Acceptance Model.The respondents of this study have perceived ease of use and usefulness on the impact when securing the community tax certificate.展开更多
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ...Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.展开更多
In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systema...In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.展开更多
The rapid growth of blockchain and Decentralized Finance(DeFi)has introduced new challenges and vulnerabilities that threaten the integrity and efficiency of the ecosystem.This study identifies critical issues such as...The rapid growth of blockchain and Decentralized Finance(DeFi)has introduced new challenges and vulnerabilities that threaten the integrity and efficiency of the ecosystem.This study identifies critical issues such as Transaction Order Dependence(TOD),Blockchain Extractable Value(BEV),and Transaction Importance Diversity(TID),which collectively undermine the fairness and security of DeFi systems.BEV-related activities,including sandwich attacks,liquidations,transaction replay etc.have emerged as significant threats,collectively generating$540.54 million in losses over 32 months across 11,289 addresses,involving 49,691 cryptocurrencies and 60,830 on-chain markets.These attacks exploit transaction mechanics to manipulate asset prices and extract value at the expense of other participants,with sandwich attacks being particularly impactful.Additionally,the growing adoption of blockchain in traditional finance highlights the challenge of TID,wherein high transaction volumes can strain systems and compromise time-sensitive operations.To address these pressing issues,we propose a novel Distributed Transaction Sequencing Strategy(DTSS)that integrates forking mechanisms with an Analytic Hierarchy Process(AHP)to enforce fair and transparent transaction ordering in a decentralized manner.Our approach is further enhanced by an optimization framework and the introduction of a Normalized Allocation Disparity Metric(NADM)that ensures optimal parameter selection for transaction prioritization.Experimental evaluations demonstrated that the DTSS effectively mitigated BEV risks,enhanced transaction fairness,and significantly improved the security and transparency of DeFi ecosystems.展开更多
P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods base...P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.展开更多
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s...In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.展开更多
Blockchain platform swith the unique characteristics of anonymity,decentralization,and transparency of their transactions,which are faced with abnormal activities such as money laundering,phishing scams,and fraudulent...Blockchain platform swith the unique characteristics of anonymity,decentralization,and transparency of their transactions,which are faced with abnormal activities such as money laundering,phishing scams,and fraudulent behavior,posing a serious threat to account asset security.For these potential security risks,this paper proposes a hybrid neural network detection method(HNND)that learns multiple types of account features and enhances fusion information among them to effectively detect abnormal transaction behaviors in the blockchain.In HNND,the Temporal Transaction Graph Attention Network(T2GAT)is first designed to learn biased aggregation representation of multi-attribute transactions among nodes,which can capture key temporal information from node neighborhood transactions.Then,the Graph Convolutional Network(GCN)is adopted which captures abstract structural features of the transaction network.Further,the Stacked Denoising Autoencode(SDA)is developed to achieve adaptive fusion of thses features from different modules.Moreover,the SDA enhances robustness and generalization ability of node representation,leading to higher binary classification accuracy in detecting abnormal behaviors of blockchain accounts.Evaluations on a real-world abnormal transaction dataset demonstrate great advantages of the proposed HNND method over other compared methods.展开更多
Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanism...Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanisms with low computation cost, increased integrity, and surveillance. The proposal of a mechanism that utilizes the features of authenticity measures using the Destination Sequence Distance Vector (DSDV) routing protocol which applies to the multi-WSN (Wireless Sensor Network) of IoT devices in CPS which is developed for the Device-to-Device (D2D) authentication developed from the local-chain and public chain respectively combined with the Software Defined Networking (SDN) control and monitoring system using switches and controllers that will route the packets through the network, identify any false nodes, take preventive measures against them and preventing them for any future problems. Next, the system is powered by Blockchain cryptographic features by utilizing the TrustChain features to create a private, secure, and temper-free ledger of the transactions performed inside the network. Results are achieved in the legitimate devices connecting to the network, transferring their packets to their destination under supervision, reporting whenever a false node is causing hurdles, and recording the transactions for temper-proof records. Evaluation results based on 1000+ transactions illustrate that the proposed mechanism not only outshines most aspects of Cyber-Physical systems but also consumes less computation power with a low latency of 0.1 seconds only.展开更多
This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction m...This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics.展开更多
The global wave of digitalization has accelerated the process of corporate digital transformation,placing higher demands on financial and accounting management.Since then,accounting work has shifted from the tradition...The global wave of digitalization has accelerated the process of corporate digital transformation,placing higher demands on financial and accounting management.Since then,accounting work has shifted from the traditional transactional model to a modern value management-oriented model,leading to a transformation of accounting functions.As corporate managers,they must advance their work proactively,empower the modernization and innovation of financial accounting with digital technology,and transition to management accounting to ensure enterprises keep pace with the times.Therefore,this paper explores the current status of corporate financial and accounting work amid the digital wave,identifies the challenges in the transformation of accounting from transactional to value management-oriented,and finally proposes several feasible and effective improvement strategies,aiming to provide more references for relevant practitioners.展开更多
The task of detecting fraud in credit card transactions is crucial to ensure the security and stability of a financial system,as well as to enforce customer confidence in digital payment systems.Historically,credit ca...The task of detecting fraud in credit card transactions is crucial to ensure the security and stability of a financial system,as well as to enforce customer confidence in digital payment systems.Historically,credit card companies have used rulebased approaches to detect fraudulent transactions,but these have proven inadequate due to the complexity of fraud strategies and have been replaced by much more powerful solutions based on machine learning or deep learning algorithms.Despite significant progress,the current approaches to fraud detection suffer from a number of limitations:for example,it is unclear whether some transaction features are more effective than others in discriminating fraudulent transactions,and they often neglect possible correlations among transactions,even though they could reveal illicit behaviour.In this paper,we propose a novel credit card fraud detection(CCFD)method based on a transaction behaviour-based hierarchical gated network.First,we introduce a feature-oriented extraction module capable of identifying key features from original transactions,and such analysis is effective in revealing the behavioural characteristics of fraudsters.Second,we design a transaction-oriented extraction module capable of capturing the correlation between users’historical and current transactional behaviour.Such information is crucial for revealing users’sequential behaviour patterns.Our approach,called transactional-behaviour-based hierarchical gated network model(TbHGN),extracts two types of new transactional features,which are then combined in a feature interaction module to learn the final transactional representations used for CCFD.We have conducted extensive experiments on a real-world credit card transaction dataset with an increase in average F1 between 1.42%and 6.53%and an improvement in average AUC between 0.63%and 2.78%over the state of the art.展开更多
基金This work was supported by the National Key R&D Program of China(No.2018YFB1700100)the National Natural Science Foundation of China(No.61873317)。
文摘To address the private data management problems and realize privacy-preserving data sharing,a blockchain-based transaction system named Ecare featuring information transparency,fairness and scalability is proposed.The proposed system formulates multiple private data access control strategies,and realizes data trading and sharing through on-chain transactions,which makes transaction records transparent and immutable.In our system,the private data are encrypted,and the role-based account model ensures that access to the data requires owner’s authorization.Moreover,a new consensus protocol named Proof of Transactions(PoT)proposed by ourselves has been used to improve consensus efficiency.The value of Ecare is not only that it aggregates telemedicine,data transactions,and other features,but also that it translates these actions into transaction events stored in the blockchain,making them transparent and immutable to all participants.The proposed system can be extended to more general big data privacy protection and data transaction scenarios.
基金Supported by National Science and Technology Pillar Project of the Ministry of Science and Technology duringn the Twelfth Five-Year Plan Period(2012BAD141318)
文摘On the basis of analyzing essence of land ticket system of Chongqing Municipality and its transaction process,this paper studies the relationship between government and farmers and between city and countryside,and discusses the drawbacks of land ticket system in Chongqing Municipality. Results show that inherent drawbacks of land ticket system and wrong guidance of policies lead to suspicion of land ticket system occupying rural resources. Interregional exploitation and intergenerational exploitation are inherent mechanism of city exploiting countryside. Finally,it proposes increasing construction land index to satisfy demand of new socialist countryside construction primarily,to ensure rural social stability; Later,use land ticket index to fill the gap of construction land in economically developed areas,so as to alleviate conflict of urban land use and maximize circulation value of rural construction land. It is expected to provide theoretical reference for relevant departments to regulate land ticket transaction system and realize the harmonious development,between urban and rural areas.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
基金Projects(61003075, 61170261) supported by the National Natural Science Foundation of China
文摘Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementations made significant performance degradation on NUMA system because they ignored the slower remote memory access. To solve this problem, a latency-based conflict detection and a forecasting-based conflict prevention method were proposed. Using these techniques, the NUMA aware TM system was presented. By reducing the remote memory access and the abort rate of transaction, the experiment results show that the NUMA aware strategies present good practical TM performance on NUMA system.
基金Supported by the National High Teehnology Development 863 Program of China(2002AAlZ1490)
文摘This paper deals with how to implement AMBA bus transaction level modeling in SystemC.There are two main techniques used in the whole modeling process,which consist of starting the platform modeling at the transaction level and using the uniformed modeling language—System C.According to the concepts of interface,port and hierarchical channel introduced in SystemC 2.0,the system of master-channel(AMBA bus)slave is created as the architecture of the AMBA bus transaction level model,which can make it more extendable.The port and interface classes of the model that are prone to program are defined in accordance with the SoC hierarchical design methodology.In addition,method calls,not signal communication,are used between different modules in the model,so the higher-level abstraction is achieved and the simulation performance is improved.The AMBA bus transaction level model is analyzed and certified by simulation experiment,and proved to be completely compliant to the AMBA specification 2.0.
文摘This paper presents a new transaction method in terms of which deals are concluded by competitive prices, and indicates its design on multiuser platform, especially the research of synchronization and vieing for powers. The system was programmed with SCO FOXBASE 210, C language and Shell. The result of nearly two year′s use proved that the transaction method and its accomplishments are all practicable.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
基金supported by the Researchers Supporting Project(No.RSP-2021/395),King Saud University,Riyadh,Saudi Arabia.
文摘Accounting Information System(AIS),which is the foundation of any enterprise resource planning(ERP)system,is often built as centralized system.The technologies that allow the Internet-of-Value,which is built onfive aspects that are network,algorithms,distributed ledger,transfers,and assets,are based on blockchain.Cryptography and consensus protocols boost the blockchain plat-form implementation,acting as a deterrent to cyber-attacks and hacks.Blockchain platforms foster innovation among supply chain participants,resulting in ecosys-tem development.Traditional business processes have been severely disrupted by blockchains since apps and transactions that previously required centralized struc-tures or trusted third-parties to authenticate them may now function in a decentra-lized manner with the same level of assurance.Because a blockchain split in AIS may easily lead to double-spending attacks,reducing the likelihood of a split has become a very important and difficult research subject.Reduced block relay time between the nodes can minimize the block propagation time of all nodes,resulting in better Bitcoin performance.In this paper,three problems were addressed on transaction and block propagation mechanisms in order to reduce the likelihood of a split.A novel algorithm for blockchain is proposed to reduce the total pro-pagation delay in AIS transactions.Numerical results reveal that,the proposed algorithm performs better and reduce the transaction delay in AIS as compared with existing methods.
文摘In recent decades, day-to-day lifestyle requires online payments as easy and simple solutions to several financial transactions, which makes the concept of Electronic payment Systems very popular in the growth of a cashless society. In fact, cashless transactions through simple mobile apps are not merely a concept anymore rather are implemented robustly and being used extensively. On the dark side, obvious financial benefits are making these apps vulnerable to being attacked, which can be successful through security breaches. These cybersecurity issues need to be traced out and resolved to make the financial transactions through an app secure and trustworthy. In this paper, several related papers are analyzed to trace out possible cybersecurity issues in the domain of Electronic Transaction System. The objective is to establish sufficient theoretical background to propose methodologies for measuring security issues and also identify the security strength of any FinTech application and provide standard security metrics.
文摘Real-Time Transaction Processing System(RTTPS)is a type of e-government that processes documents using electronic communication technology.In this time of the pandemic,the study contributes to the necessity to perform more processing online and less face-to-face.In terms of retrieving information,a comparison between Porter’s Stemming algorithm and this study was performed.The study aims to design a database that will serve as a repository of information in retrieving information and also to examine the efficacy of the real-time process in securing the government requirements using the Technology Acceptance Model.The respondents of this study have perceived ease of use and usefulness on the impact when securing the community tax certificate.
基金Philosophy and Social Science Planning Projects in Yunnan Province,No.QN202428China Postdoctoral Science Foundation,No.2024M752918。
文摘Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.
文摘In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.
基金funded by the University of Macao(file no.MYRG2022-00162-FST and MYRG2019-00136-FST).
文摘The rapid growth of blockchain and Decentralized Finance(DeFi)has introduced new challenges and vulnerabilities that threaten the integrity and efficiency of the ecosystem.This study identifies critical issues such as Transaction Order Dependence(TOD),Blockchain Extractable Value(BEV),and Transaction Importance Diversity(TID),which collectively undermine the fairness and security of DeFi systems.BEV-related activities,including sandwich attacks,liquidations,transaction replay etc.have emerged as significant threats,collectively generating$540.54 million in losses over 32 months across 11,289 addresses,involving 49,691 cryptocurrencies and 60,830 on-chain markets.These attacks exploit transaction mechanics to manipulate asset prices and extract value at the expense of other participants,with sandwich attacks being particularly impactful.Additionally,the growing adoption of blockchain in traditional finance highlights the challenge of TID,wherein high transaction volumes can strain systems and compromise time-sensitive operations.To address these pressing issues,we propose a novel Distributed Transaction Sequencing Strategy(DTSS)that integrates forking mechanisms with an Analytic Hierarchy Process(AHP)to enforce fair and transparent transaction ordering in a decentralized manner.Our approach is further enhanced by an optimization framework and the introduction of a Normalized Allocation Disparity Metric(NADM)that ensures optimal parameter selection for transaction prioritization.Experimental evaluations demonstrated that the DTSS effectively mitigated BEV risks,enhanced transaction fairness,and significantly improved the security and transparency of DeFi ecosystems.
文摘P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.
文摘In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.
文摘Blockchain platform swith the unique characteristics of anonymity,decentralization,and transparency of their transactions,which are faced with abnormal activities such as money laundering,phishing scams,and fraudulent behavior,posing a serious threat to account asset security.For these potential security risks,this paper proposes a hybrid neural network detection method(HNND)that learns multiple types of account features and enhances fusion information among them to effectively detect abnormal transaction behaviors in the blockchain.In HNND,the Temporal Transaction Graph Attention Network(T2GAT)is first designed to learn biased aggregation representation of multi-attribute transactions among nodes,which can capture key temporal information from node neighborhood transactions.Then,the Graph Convolutional Network(GCN)is adopted which captures abstract structural features of the transaction network.Further,the Stacked Denoising Autoencode(SDA)is developed to achieve adaptive fusion of thses features from different modules.Moreover,the SDA enhances robustness and generalization ability of node representation,leading to higher binary classification accuracy in detecting abnormal behaviors of blockchain accounts.Evaluations on a real-world abnormal transaction dataset demonstrate great advantages of the proposed HNND method over other compared methods.
基金funded by Ajman University,AU-Funded Research Grant 2023-IRG-ENIT-22.
文摘Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanisms with low computation cost, increased integrity, and surveillance. The proposal of a mechanism that utilizes the features of authenticity measures using the Destination Sequence Distance Vector (DSDV) routing protocol which applies to the multi-WSN (Wireless Sensor Network) of IoT devices in CPS which is developed for the Device-to-Device (D2D) authentication developed from the local-chain and public chain respectively combined with the Software Defined Networking (SDN) control and monitoring system using switches and controllers that will route the packets through the network, identify any false nodes, take preventive measures against them and preventing them for any future problems. Next, the system is powered by Blockchain cryptographic features by utilizing the TrustChain features to create a private, secure, and temper-free ledger of the transactions performed inside the network. Results are achieved in the legitimate devices connecting to the network, transferring their packets to their destination under supervision, reporting whenever a false node is causing hurdles, and recording the transactions for temper-proof records. Evaluation results based on 1000+ transactions illustrate that the proposed mechanism not only outshines most aspects of Cyber-Physical systems but also consumes less computation power with a low latency of 0.1 seconds only.
基金funded by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.KFU241683].
文摘This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics.
文摘The global wave of digitalization has accelerated the process of corporate digital transformation,placing higher demands on financial and accounting management.Since then,accounting work has shifted from the traditional transactional model to a modern value management-oriented model,leading to a transformation of accounting functions.As corporate managers,they must advance their work proactively,empower the modernization and innovation of financial accounting with digital technology,and transition to management accounting to ensure enterprises keep pace with the times.Therefore,this paper explores the current status of corporate financial and accounting work amid the digital wave,identifies the challenges in the transformation of accounting from transactional to value management-oriented,and finally proposes several feasible and effective improvement strategies,aiming to provide more references for relevant practitioners.
基金supported in part by the National Natural Science Foundation of China(61972241)the Natural Science Foundation of Shanghai(24ZR1427500,22ZR1427100)+1 种基金the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04).
文摘The task of detecting fraud in credit card transactions is crucial to ensure the security and stability of a financial system,as well as to enforce customer confidence in digital payment systems.Historically,credit card companies have used rulebased approaches to detect fraudulent transactions,but these have proven inadequate due to the complexity of fraud strategies and have been replaced by much more powerful solutions based on machine learning or deep learning algorithms.Despite significant progress,the current approaches to fraud detection suffer from a number of limitations:for example,it is unclear whether some transaction features are more effective than others in discriminating fraudulent transactions,and they often neglect possible correlations among transactions,even though they could reveal illicit behaviour.In this paper,we propose a novel credit card fraud detection(CCFD)method based on a transaction behaviour-based hierarchical gated network.First,we introduce a feature-oriented extraction module capable of identifying key features from original transactions,and such analysis is effective in revealing the behavioural characteristics of fraudsters.Second,we design a transaction-oriented extraction module capable of capturing the correlation between users’historical and current transactional behaviour.Such information is crucial for revealing users’sequential behaviour patterns.Our approach,called transactional-behaviour-based hierarchical gated network model(TbHGN),extracts two types of new transactional features,which are then combined in a feature interaction module to learn the final transactional representations used for CCFD.We have conducted extensive experiments on a real-world credit card transaction dataset with an increase in average F1 between 1.42%and 6.53%and an improvement in average AUC between 0.63%and 2.78%over the state of the art.