Naturally optimized successful synovial joints with lightweight,high load-carrying,ultra-low friction and wear have attracted tribological communities to constantly imitate and replicate.Despite impressive advances in...Naturally optimized successful synovial joints with lightweight,high load-carrying,ultra-low friction and wear have attracted tribological communities to constantly imitate and replicate.Despite impressive advances in cartilage lubrication,extending such extraordinary performance advantages to macroscale solid lubrication remains a challenge.Herein,inspired by the fascinating interplay of synovial joints,a novel kind of trans-scale hierarchical structured ceramic-based composite was developed.Intro-ducing microscale Ag microspheres(AgMs)“cartilage”layer and nanoscale Ag quantum dots/MXene(AgQDs/MXene)“synovial fluid”into the interior and exterior of printed macroscale SiOC“hard bone”realistically restores the gradient structure of synovial joint prototype.The resulted composite with ideal compressive strength(70.44 MPa)can achieve a 60.53%friction reduction and a low wear rate(2.05×10^(−6)mm 3 N^(−1)m^(−1))in dry tribo-contact for 3600 sliding cycles,while also maintaining considerable low friction(∼0.11)over 10,000 sliding cycles and long-term stable lubrication(∼0.13)for up to 50,000 re-ciprocating cycles.Such extraordinary performance can be explained by the division of macro contacts,full loading of AgMs and AgQDs/MXene,abrasive debris capture and removal,as well as the shear rolling effect induced by friction process.This work opens a new avenue to develop structural lubricating mate-rials for complex engineering applications.展开更多
Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk...Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/ molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.展开更多
A closed,trans-scale formulation of damage evolution based on the statistical mi- crodamage mechanics is summarized in this paper.The dynamic function of damage bridges the mesoscopic and macroscopic evolution of dama...A closed,trans-scale formulation of damage evolution based on the statistical mi- crodamage mechanics is summarized in this paper.The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage.The spallation in an aluminium plate is studied with this formulation.It is found that the damage evolution is governed by several dimensionless parameters, i.e.,imposed Deborah numbers De~* and De,Mach number M and damage number S.In particular, the most critical mode of the macroscopic damage evolution,i.e.,the damage localization,is deter- mined by Deborah number De~*.Deborah number De~* reflects the coupling and competition between the macroscopic loading and the microdamage growth.Therefore,our results reveal the multi-scale nature of spallation.In fact,the damage localization results from the nonlinearity of the microdamage growth.In addition,the dependence of the damage rate on imposed Deborah numbers De~* and De, Mach number M and damage number S is discussed.展开更多
The pore structure and porosity of three kinds of mine grouting materials were characterized based on a thin-section analysis and low-field nuclear magnetic resonance (NMR) technique. The macroscopic pore interconnect...The pore structure and porosity of three kinds of mine grouting materials were characterized based on a thin-section analysis and low-field nuclear magnetic resonance (NMR) technique. The macroscopic pore interconnectivity was investigated using binary images captured from thin sections and a random walk pore spectral dimension (RWPSD) algorithm. The experimental results show that the microstructure of the grouting materials used consisted of interlayer pores, gel pores, capillary pores, circular air holes, and small fractures, and tailings can fill some gaps in the hydration product structure and dense hydration products. There is a positive correlation between pore interconnectivity and curing time. In addition, there is a relationship between pore interconnectivity and porosity. With increasing porosity and pore interconnectivity, a non-uniform pore structure occurs in mine grouting materials with an accelerator and results in reduced setting time and later strength.展开更多
For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-...For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-slip driving.The process of the movement is divided into two steps,i.e.,the″sliding″phase and the″stickness″phase.In the whole process,the kinematics model of the inertial stick-slip driving is established,and it reveals some factors affecting the velocity of inertial stick-slip driving.Furthermore,a simulation of movement is preformed by Matlab-Simulink software,and the whole process of the inertial stick-slip driving is displayed.After one experimental prototype is designed,the back and forth velocity is tested.Finally,the simulation verifies the accuracy of the kinematics model.展开更多
The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhyd...The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhydrophobic or self-cleaning surfaces,and so on.Due to the influence of the intrinsic characteristic length(g),the surface wrinkling behavior of SFCS at the micro scale is different from that at the macro scale.In this work,based on the strain gradient theory,a trans-scale surface wrinkling model for SFCS is established.First,the effectiveness of this model is verified by previous experiments.Then,based on the model and dimensional analysis,the effect of g on the surface wrinkling behavior is investigated,and the scaling relationship of surface wrinkling of SFCS at different scales is analyzed.The results show that the influence of g cannot be neglected when the film thickness decreases to the one comparable to g.At the micro scale,g will lead to the increase of the critical wrinkling wavelength and load.In addition,the scaling relationship of surface wrinkling at the micro scale will not follow the traditional one.Our study explains the underlying mechanism of the dissimilarity of surface wrinkling behaviors of SFCS at different scales and lays a theoretical foundation for the precise control of surface-order structures.展开更多
The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical prop...The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.展开更多
A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that t...A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that the microstructure is different from specimen to specimen even in the same group.Specifically,a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account.A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro-and macro-scale.Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density(SED)factor.By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro-to macro-scale,a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process.The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model.Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected.The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model.It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process.The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.展开更多
Ordered structures with functional units offer the potential for enhanced performance in metallic materials.Among these structures,gradient nanotwinned(GNT)microstructures demonstrate excellent controllability.This pa...Ordered structures with functional units offer the potential for enhanced performance in metallic materials.Among these structures,gradient nanotwinned(GNT)microstructures demonstrate excellent controllability.This paper provides a comprehensive review of the current state-of-the-art studies on GNT structures,encompassing various aspects such as design strategies,mechanical properties characterization,spatially gradient strain evolution analysis,and the significant role of geometrically necessary dislocations(GNDs).The primary objective is to systematically unravel the fundamental strengthening mechanisms by gaining an in-depth understanding of the deformation behavior of nanotwinned units.Through this work,we aim to contribute to the broader field of materials science by consolidating knowledge and providing insights for the development of novel metallic materials with enhanced properties and tailored performance characteristics.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB3701500)the National Natural Science Founda-tion of China(No.52072306)+2 种基金the National Defense Basic Scientific Research Program of China(No.JCKYS2019607001)the Fundamen-tal Research Funds for the Central Universities(Nos.3102019PJ008 and 3102018JCC002)the National Program for Support of Top-notch Young Professionals(No.W02070161).
文摘Naturally optimized successful synovial joints with lightweight,high load-carrying,ultra-low friction and wear have attracted tribological communities to constantly imitate and replicate.Despite impressive advances in cartilage lubrication,extending such extraordinary performance advantages to macroscale solid lubrication remains a challenge.Herein,inspired by the fascinating interplay of synovial joints,a novel kind of trans-scale hierarchical structured ceramic-based composite was developed.Intro-ducing microscale Ag microspheres(AgMs)“cartilage”layer and nanoscale Ag quantum dots/MXene(AgQDs/MXene)“synovial fluid”into the interior and exterior of printed macroscale SiOC“hard bone”realistically restores the gradient structure of synovial joint prototype.The resulted composite with ideal compressive strength(70.44 MPa)can achieve a 60.53%friction reduction and a low wear rate(2.05×10^(−6)mm 3 N^(−1)m^(−1))in dry tribo-contact for 3600 sliding cycles,while also maintaining considerable low friction(∼0.11)over 10,000 sliding cycles and long-term stable lubrication(∼0.13)for up to 50,000 re-ciprocating cycles.Such extraordinary performance can be explained by the division of macro contacts,full loading of AgMs and AgQDs/MXene,abrasive debris capture and removal,as well as the shear rolling effect induced by friction process.This work opens a new avenue to develop structural lubricating mate-rials for complex engineering applications.
基金the National Basic Research Program of China (2007CB814800)the National Natural Science Foundation of China (10432050,10572139,10721202,10772012,10772181,90715001)CAS Innovation Program (KJCX2-SW-L08,KJCX2-YW-M04)
文摘Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/ molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.
基金The project supported by the National Natural Science Foundation of China (10172084,10232040,10232050,10372012,10302029) and the Special Funds for Major State Research Project (G200077305)
文摘A closed,trans-scale formulation of damage evolution based on the statistical mi- crodamage mechanics is summarized in this paper.The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage.The spallation in an aluminium plate is studied with this formulation.It is found that the damage evolution is governed by several dimensionless parameters, i.e.,imposed Deborah numbers De~* and De,Mach number M and damage number S.In particular, the most critical mode of the macroscopic damage evolution,i.e.,the damage localization,is deter- mined by Deborah number De~*.Deborah number De~* reflects the coupling and competition between the macroscopic loading and the microdamage growth.Therefore,our results reveal the multi-scale nature of spallation.In fact,the damage localization results from the nonlinearity of the microdamage growth.In addition,the dependence of the damage rate on imposed Deborah numbers De~* and De, Mach number M and damage number S is discussed.
基金Project(41672298) supported by the National Natural Science Foundation of ChinaProject(2017YFC0602901) supported by the National Key Research and Development Program of China
文摘The pore structure and porosity of three kinds of mine grouting materials were characterized based on a thin-section analysis and low-field nuclear magnetic resonance (NMR) technique. The macroscopic pore interconnectivity was investigated using binary images captured from thin sections and a random walk pore spectral dimension (RWPSD) algorithm. The experimental results show that the microstructure of the grouting materials used consisted of interlayer pores, gel pores, capillary pores, circular air holes, and small fractures, and tailings can fill some gaps in the hydration product structure and dense hydration products. There is a positive correlation between pore interconnectivity and curing time. In addition, there is a relationship between pore interconnectivity and porosity. With increasing porosity and pore interconnectivity, a non-uniform pore structure occurs in mine grouting materials with an accelerator and results in reduced setting time and later strength.
基金supported by the National Natural Science Foundation of China(No.51175358)the Natural Science Foundation of Jiangsu Province (No.BK20140345)+2 种基金Colleges and Universities Natural Science Foundation of Jiangsu Province (No.14KJB460025)the National Science Foundation for Post-Doctoral Scientists of China (No.2014M551651)the Natural Science Foundation of Jiangsu Province for Post-Doctoral Scientists (No. 1401073C)
文摘For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-slip driving.The process of the movement is divided into two steps,i.e.,the″sliding″phase and the″stickness″phase.In the whole process,the kinematics model of the inertial stick-slip driving is established,and it reveals some factors affecting the velocity of inertial stick-slip driving.Furthermore,a simulation of movement is preformed by Matlab-Simulink software,and the whole process of the inertial stick-slip driving is displayed.After one experimental prototype is designed,the back and forth velocity is tested.Finally,the simulation verifies the accuracy of the kinematics model.
基金supported by the Postdoctoral Science Foundation of China for Innovative Talents(Grant No.BX2022008)the National Natural Science Foundation of China(Grant Nos.12202007,11890681,12032001 and 11521202)。
文摘The self-assembly of surface-order structures based on the surface wrinkling of stiff film-compliant substrate structures(SFCS)is potentially useful in the fabrication of functional devices,the manufacture of superhydrophobic or self-cleaning surfaces,and so on.Due to the influence of the intrinsic characteristic length(g),the surface wrinkling behavior of SFCS at the micro scale is different from that at the macro scale.In this work,based on the strain gradient theory,a trans-scale surface wrinkling model for SFCS is established.First,the effectiveness of this model is verified by previous experiments.Then,based on the model and dimensional analysis,the effect of g on the surface wrinkling behavior is investigated,and the scaling relationship of surface wrinkling of SFCS at different scales is analyzed.The results show that the influence of g cannot be neglected when the film thickness decreases to the one comparable to g.At the micro scale,g will lead to the increase of the critical wrinkling wavelength and load.In addition,the scaling relationship of surface wrinkling at the micro scale will not follow the traditional one.Our study explains the underlying mechanism of the dissimilarity of surface wrinkling behaviors of SFCS at different scales and lays a theoretical foundation for the precise control of surface-order structures.
基金Project supported by the Ministry of Science and Technology of China (No. 2009CB421304)National Natural Science Foundation of China (Nos. 10872082 and 11002064)Ministry of Education, Science and Technology Research Project(No. 308022)
文摘The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.
基金supported by the National Natural Science Foundation of China(Grant No.51378081)
文摘A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition.The reason is well known that the microstructure is different from specimen to specimen even in the same group.Specifically,a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account.A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro-and macro-scale.Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density(SED)factor.By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro-to macro-scale,a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process.The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model.Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected.The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model.It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process.The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.
基金support from the National Natural Science Foundation of China(Nos.51931010 and 92163202)and the Key Research Program of Frontier Science and International partnership program(No.GJHZ2029)+1 种基金Z.C.acknowledges financial support from the National Natural Science Foundation of China(No.52001312)Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS).
文摘Ordered structures with functional units offer the potential for enhanced performance in metallic materials.Among these structures,gradient nanotwinned(GNT)microstructures demonstrate excellent controllability.This paper provides a comprehensive review of the current state-of-the-art studies on GNT structures,encompassing various aspects such as design strategies,mechanical properties characterization,spatially gradient strain evolution analysis,and the significant role of geometrically necessary dislocations(GNDs).The primary objective is to systematically unravel the fundamental strengthening mechanisms by gaining an in-depth understanding of the deformation behavior of nanotwinned units.Through this work,we aim to contribute to the broader field of materials science by consolidating knowledge and providing insights for the development of novel metallic materials with enhanced properties and tailored performance characteristics.