Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system ...Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system is crucial in deep reservoir exploration.This study examined the first member and upper submember of the second member of the Dongying Formation in the Bodong Low Uplift in the Bohai Bay Basin(East China),documenting the petrologic features and physical properties of reservoirs in different tectonic sub-units through integrated analysis of log and rock data,along with core observation.A mechanism for deep reservoir formation in lacustrine rift basins was developed to elucidate the sedimentary and diagenetic processes in complex tectonic settings.The results show that tectonic activities result in the occurrence of provenances in multiple directions and the existence of reservoirs at varying burial depths,as well as the significant diversity in sedimentary and diagenetic processes.The grain sizes of the sandstones,influenced by transport pathways rather than the topography of the sedimentary area,exhibit spatial complexity due to tectonic frameworks,which determine the initial pore content of reservoirs.However,the burial depth,influenced by subsequent tectonic subsidence,significantly impacts pore evolution during diagenesis.Based on the significant differences of reservoirs in slope zone,low uplift and depression zone,we establish different tectonic-diagenetic models in deep complex tectonic units of lacustrine rift basins.展开更多
East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines t...East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines ten critical questions of East Asian tectonics,including the thickness of the continental lithosphere,the origin of the North–South Gravity Lineament,and the northern extent of the Indian plate beneath the Tibetan Plateau.Additional questions address the Tibetan Plateau's lateral growth,the Tianshan mountain building,the mantle flow in response to the Indo-Asian collision,and the formation of the Shanxi Rift.The review also explores the subduction along the eastern margins of the East Asian Continent and the origins of the Changbaishan volcanic field,the destruction of the North China Craton,and the development of the Mesozoic Large Granitic Province in South China.Originally presented at the DEEP2024 workshop to stimulate discussion of how SinoProbe-II research initiatives could advance our understanding of Asian tectonics,this review provides context for each question,summarizes current knowledge,and identifies promising research directions.展开更多
The tectonic setting of the Himalaya during the Early Paleozoic has been a subject of enduring debate within the scientific community.Newly discovered bimodal intrusive rocks from comprehensive field geological invest...The tectonic setting of the Himalaya during the Early Paleozoic has been a subject of enduring debate within the scientific community.Newly discovered bimodal intrusive rocks from comprehensive field geological investigation in the central mountain range were subjected to petrology,zircon U-Pb geochronology,zircon Hf isotopes and whole-rock geochemistry analyses.The Palie bimodal intrusive rocks,comprising amphibolite and granitic gneiss,were formed at~489 Ma.The amphibolite exhibits geochemical characteristics consistent with N-MORB,while the granitic gneiss is classified as high potassium calc-alkaline peraluminous S-type granite.Both igneous rocks exhibit negative zirconε_(Hf)(t)values and display ancient T_(DM)^(C)ages.In conjunction with regional geological survey findings,it can be inferred that the formation of the Palie bimodal intrusive rocks occurred within a post-collision extensional tectonic setting.The amphibolite genesis involved partial melting of an enriched lithospheric mantle with some crustal assimilation,whereas the origin of the granitic gneiss can be attributed to partial melting of pre-existing felsic crust.Our data indicate that during the Early Paleozoic,the Himalaya underwent a transition from a pan-African collisional setting to post-collisional extensional tectonics.展开更多
Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fau...Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau.展开更多
This research investigates dynamic earth processes within the South Setifian allochthonous ensemble,providing insights into landscape evolution and seismotectonic activity within the Tellian mountain chain.Focusing on...This research investigates dynamic earth processes within the South Setifian allochthonous ensemble,providing insights into landscape evolution and seismotectonic activity within the Tellian mountain chain.Focusing on the Jebel Gustar and Kef Lahmar area,which includes 14 sub-basins,this research uses a DEM-based technique to assess Holocene activities,lineament characteristics,and stream systems.Five geomorphic indices are used to assess relative active tectonics:the stream lengthgradient index(SL),drainage basin asymmetry(AF),valley-floor width to valley height ratio(VF),drainage basin shape(BS),and mountain front sinuosity(SMF).A weighted overlay of these five indices produces the Index of Relative Active Tectonics(IRAT)map.The findings reveal significant neotectonic activity in the study area,supported by profound basement faulting.This research highlights the morpho-structural processes and neotectonics activity in the Jebel Gustar,providing a framework for investigating the evolution of this structure.Additionally,it enhances comprehension of the interactions between the alpine range's internal zones in Eastern Algeria and the Atlasic domain.This study proposes a systematic approach to evaluate the tectonic and geomorphological dynamics of the South Setif region.展开更多
In this article,the contemporary stress state of the Zhao-Ping metallogenic belt in eastern China was revealed using overcoring and hydraulic fracturing stress data,the relation between the stress field and geological...In this article,the contemporary stress state of the Zhao-Ping metallogenic belt in eastern China was revealed using overcoring and hydraulic fracturing stress data,the relation between the stress field and geological tectonics was discussed,and the stability of regional faults under the present-day stress environment was evaluated.The results indicate that the stress level is considerably high,and the distribution of stress intensity is uneven.The stress regime is primarily characterized by σ_(H)>σ_(v)>σ_(h).The σ_(H) orientation is well-oriented in the WNW-ESE,which is roughly identical to other stress indicators.Moreover,theσH direction reflected by joint strikes and inferred based on the fault characteristics agrees fairly with the identified stress orientation.The modern stress field basically inherited the tectonic stress field of the Yanshanian and Himalayan periods but is principally dominated by the Himalayan period.Additionally,the calculatedμm ranges from 0.2 to 0.7,indicating that the possibility of shallow faults across this area being reactivated and experiencing shear failure is small overall under the current stress conditions.μm=0.2 and 0.5 are suggested as the lower and upper limits for predicting and analyzing future fault activity in the area,respectively.展开更多
A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe...A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe granites consist of monzogranite and leucogranite.Zircon U-Pb dating shows that the emplacement ages of the monzogranite and leucogranite are 502.0 Ma and 500.9 Ma,respectively.All samples have high SiO_(2) content and a weakly to strongly peraluminous character(A/CNK=1.08-1.23),consistent with S-type granites.The monzogranite has relatively high CaO,Sr,Ba,and CaO/Na_(2)O ratios but lower Rb.In contrast,the leucogranite has lower CaO,Sr,Ba,and CaO/Na_(2)O ratios but higher Rb.The similar ε_(Nd)(t)values(−9.3 to−8.4)and Pb isotopic compositions((^(206)Pb/^(204)Pb)t=18.03-19.36,(^(207)Pb/^(204)Pb)t=15.66-15.76,(^(208)Pb/^(204)Pb)t=37.97-38.55)suggest that the monzogranite formed through partial melting of crustal greywacke,while the leucogranite originated from partial melting of crustal pelite.Regional geological studies suggest that these S-type granites in Pinghe were emplaced in an active continental margin setting,associated with the westward subduction of the proto-Tethys oceanic slab.The geochemical characteristics of leucogranite are consistent with those of tungsten-tin-related granites,indicating significant metallogenic potential for W and Sn deposits.展开更多
Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accur...Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.展开更多
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust i...The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.展开更多
To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in th...To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment(plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes;any other tectonic style is usefully called "stagnant lid" or "fragmented lid". In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects,which we informally call "planetoids" and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice(Jupiter, Saturn, Uranus, and Neptune)and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m^3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m^3 or greater from 20 icy planetoids(including the gaseous and icy giant planets) with ρ = 2200 kg/m^3 or less. We define the "Tectonic Activity Index"(TAI), scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing(inferred from impact crater density). Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate(rocky) planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is the dominant mode of heat loss and that plate tectonics is unusual. To make progress understanding Earth's tectonic history and the tectonic style of active exoplanets, we need to better understand the range and controls of active stagnant lid tectonics.展开更多
Seventy-three large-superlarge deposits in China were formed in 4 metallogenic epochs, and located in 6 metallogenic domains. By combing their time-space distribution and the relevant data of crustal thickness, we dis...Seventy-three large-superlarge deposits in China were formed in 4 metallogenic epochs, and located in 6 metallogenic domains. By combing their time-space distribution and the relevant data of crustal thickness, we discuss the control conditions of deep tectonics on superlarge deposits. The various spatial variation of the crustal thickness where deposits locate is closely related to their different tectonic setting. The crustal thickness of the region where deposits are in the Precatnbrian metallogenic epoch is 37.1 km and shows double-peak distribution, which is related to the different tectonic-mineralization processes in the Tarim-North China and Yangtze metallogenic domains. The crustal thickness of the region where deposits are in the Paleoproterozoic metallogenic epoch is 43.4 km and shows normal distribution, which is the result of 'pure' mineralization setting. The crustal thickness of the region where deposits are in the Late Palaeozoic-Early Mesozoic metallogenic epoch is about 41.2 km and shows multi-peak distribution, which can be related with dispersing distribution in the metallogenic domain of these superlarge deposits. The crustal thickness of the region where deposits are in the post-Indosinian metallogenic epoch is 37.3 km, and shows skew distribution, which resulted from different tectonic settings in eastern and western China.展开更多
There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, B...There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger.展开更多
Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantl...Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantle. This process is the surface expression of modern-day heat loss from Earth. One of the biggest questions in Geosciences today is "when did plate tectonics begin on Earth" with a wide range of theories based on an equally diverse set of constraints from geology, geochemistry, numerical modeling, or pure speculation. In this contribution, we turn the coin over and ask "when was the last appearance in the geological record for which there is proof that plate tectonics did not operate on the planet as it does today". We apply the laws of uniformitarianism to the rock record to ask how far back in time is the geologic record consistent with presently-operating kinematics of plate motion, before which some other mechanisms of planetary heat loss may have been in operation. Some have suggested that evidence shows that there was no plate tectonics before 800 Ma ago, others sometime before 1.8–2.7 Ga, or before 2.7 Ga. Still others recognize evidence for plate tectonics as early as 3.0 Ga, 3.3–3.5 Ga, the age of the oldest rocks, or in the Hadean before 4.3 Ga. A key undiscussed question is: why is there such a diversity of opinion about the age at which plate tectonics can be shown to not have operated, and what criteria are the different research groups using to define plate tectonics, and to recognize evidence of plate tectonics in very old rocks? Here, we present and evaluate data from the rock record, constrained by relevant geochemical-isotopic data, and conclude that the evidence shows indubitably that plate tectonics has been operating at least since the formation of the oldest rocks, albeit with some differences in processes, compositions, and products in earlier times of higher heat generation and mantle temperature, weaker oceanic lithosphere, hotter subduction zones caused by more slab-melt generation, and under different biological and atmospheric conditions.展开更多
This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in Nort...This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in North China have been divided into three stages. The earliest Jurassic is marked by a period of magmatism quiescence (in 205-190 Ma) and regional uplift, which are considered to be the continuation of the “Indosinian movement” characterized by continent-continent collision between the North and South China blocks. The Early to Middle Jurassic (in 190-170 Ma) was predominated by weak lithospheric extension expressed by mantle-derived plutonism and volcanism along the Yanshan belt and alongside the Tan-Lu fault zone, normal faulting and graben formation along the Yinshan- Yanshan tectonic belt, depression and resuming of coal-bearing sedimentation in vast regions of the North China block (NCB). The Middle to Late Jurassic stage started at 165y.5 Ma and ended up before 136 Ma; it was dominated by intensive intraplate deformation resulting from multi-directional compressions. Two major deformation events have been identified. One is marked by stratigraphic unconformity beneath the thick Upper Jurassic molasic series in the foreland zones of the western Ordos thrust-fold belt and along the Yinshan-Yanshan belt; it was predated 160 Ma. The other one is indicated by stratigraphic unconformity at the base of the Lower Cretaceous and predated 135 Ma. During this last stage, two latitudinal tectonic belts, the Yinshan-Yanshan belt in the north and the Qinling-Dabie belt in the south, and the western margin of the Ordos basin were all activated by thrusting; the NCB itself was deformed by the NE to NNE-trending structural system involving thrusting, associated folding and sinistral strike-slip faulting, which were spatially partitioned. Foliated S-type granitic plutons aged 160-150 Ma were massively emplaced in the Jiao-Liao massif east of the Tan-Lu fault zone and indicate important crustal thickening in this part of the NCB. The Jurassic deformation patterns, different tectonic systems and multi-directional contractions in North China recorded far-field effects of synchronous convergences, toward the East Asian continent, of three different plates, the Siberian plate in the north, the paleo-Pacific oceanic plate in the east and the Lhasa block in the southwest. This Middle to Late Jurassic intraplate orogenesis and pervasive shortening deformation preceded lithospheric attenuation and thinning in East China, which most possibly started by the Early Cretaceous around 135 Ma.展开更多
When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the midd...When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).展开更多
During the Late Mesozoic Middle Jurassic--Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacif...During the Late Mesozoic Middle Jurassic--Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I) and intra-continental extensional basins (Type II). Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tufts and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous-Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geo- dynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc exten- sional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range tectonics between both shores of the Pacific, such as mantle plume formation, scales of extensional and igneous rock assemblages and the age of basin and range tectonics, were caused mainly by the Yellowstone mantle plume in the eastern shore of the Pacific.展开更多
Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significan...Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.展开更多
Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seaw...Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.展开更多
基金funded by the Open Fund of Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(Grant No.MGE2020KG10)the Open Fund of Key Laboratory of Submarine Geosciences,Ministry of Natural Resources(Grant No.KLSG 2208)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-YBMS-227,2023-JC-QN-0287)the Postgraduate Innovation and Practice Ability Development Fund of Xi'an Shiyou University(No.YCS23113046)the National Natural Science Foundation of China(Grant No.41802128,42076219)。
文摘Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system is crucial in deep reservoir exploration.This study examined the first member and upper submember of the second member of the Dongying Formation in the Bodong Low Uplift in the Bohai Bay Basin(East China),documenting the petrologic features and physical properties of reservoirs in different tectonic sub-units through integrated analysis of log and rock data,along with core observation.A mechanism for deep reservoir formation in lacustrine rift basins was developed to elucidate the sedimentary and diagenetic processes in complex tectonic settings.The results show that tectonic activities result in the occurrence of provenances in multiple directions and the existence of reservoirs at varying burial depths,as well as the significant diversity in sedimentary and diagenetic processes.The grain sizes of the sandstones,influenced by transport pathways rather than the topography of the sedimentary area,exhibit spatial complexity due to tectonic frameworks,which determine the initial pore content of reservoirs.However,the burial depth,influenced by subsequent tectonic subsidence,significantly impacts pore evolution during diagenesis.Based on the significant differences of reservoirs in slope zone,low uplift and depression zone,we establish different tectonic-diagenetic models in deep complex tectonic units of lacustrine rift basins.
基金supported by grants from the National Science Foundation of the USA.
文摘East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines ten critical questions of East Asian tectonics,including the thickness of the continental lithosphere,the origin of the North–South Gravity Lineament,and the northern extent of the Indian plate beneath the Tibetan Plateau.Additional questions address the Tibetan Plateau's lateral growth,the Tianshan mountain building,the mantle flow in response to the Indo-Asian collision,and the formation of the Shanxi Rift.The review also explores the subduction along the eastern margins of the East Asian Continent and the origins of the Changbaishan volcanic field,the destruction of the North China Craton,and the development of the Mesozoic Large Granitic Province in South China.Originally presented at the DEEP2024 workshop to stimulate discussion of how SinoProbe-II research initiatives could advance our understanding of Asian tectonics,this review provides context for each question,summarizes current knowledge,and identifies promising research directions.
基金supported by the China Geological Survey Program(Grant No.DD20220989)the National Natural Science Foundation of China(Grant No.41972118)。
文摘The tectonic setting of the Himalaya during the Early Paleozoic has been a subject of enduring debate within the scientific community.Newly discovered bimodal intrusive rocks from comprehensive field geological investigation in the central mountain range were subjected to petrology,zircon U-Pb geochronology,zircon Hf isotopes and whole-rock geochemistry analyses.The Palie bimodal intrusive rocks,comprising amphibolite and granitic gneiss,were formed at~489 Ma.The amphibolite exhibits geochemical characteristics consistent with N-MORB,while the granitic gneiss is classified as high potassium calc-alkaline peraluminous S-type granite.Both igneous rocks exhibit negative zirconε_(Hf)(t)values and display ancient T_(DM)^(C)ages.In conjunction with regional geological survey findings,it can be inferred that the formation of the Palie bimodal intrusive rocks occurred within a post-collision extensional tectonic setting.The amphibolite genesis involved partial melting of an enriched lithospheric mantle with some crustal assimilation,whereas the origin of the granitic gneiss can be attributed to partial melting of pre-existing felsic crust.Our data indicate that during the Early Paleozoic,the Himalaya underwent a transition from a pan-African collisional setting to post-collisional extensional tectonics.
基金financial support received through a grant from the Vice-President's Research Office at Bu-Ali Sina University,Iran(Grant Number 09.99)。
文摘Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau.
文摘This research investigates dynamic earth processes within the South Setifian allochthonous ensemble,providing insights into landscape evolution and seismotectonic activity within the Tellian mountain chain.Focusing on the Jebel Gustar and Kef Lahmar area,which includes 14 sub-basins,this research uses a DEM-based technique to assess Holocene activities,lineament characteristics,and stream systems.Five geomorphic indices are used to assess relative active tectonics:the stream lengthgradient index(SL),drainage basin asymmetry(AF),valley-floor width to valley height ratio(VF),drainage basin shape(BS),and mountain front sinuosity(SMF).A weighted overlay of these five indices produces the Index of Relative Active Tectonics(IRAT)map.The findings reveal significant neotectonic activity in the study area,supported by profound basement faulting.This research highlights the morpho-structural processes and neotectonics activity in the Jebel Gustar,providing a framework for investigating the evolution of this structure.Additionally,it enhances comprehension of the interactions between the alpine range's internal zones in Eastern Algeria and the Atlasic domain.This study proposes a systematic approach to evaluate the tectonic and geomorphological dynamics of the South Setif region.
基金supported by the National Natural Science Foundation of China(52204084)the Open Research Fund of The State Key Laboratory of Coal Resources and safe Mining,CUMT(SKLCRSM23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(FRF-IDRY-GD22-002)the Fundamen〓〓tal Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program(QNXM20220009)the National Key R&D Program of China(2022YFC2905600 and 2022YFC3004601)the Science,Technology&Innovation Proj〓〓ect of Xiongan New Area(2023XAGG0061).
文摘In this article,the contemporary stress state of the Zhao-Ping metallogenic belt in eastern China was revealed using overcoring and hydraulic fracturing stress data,the relation between the stress field and geological tectonics was discussed,and the stability of regional faults under the present-day stress environment was evaluated.The results indicate that the stress level is considerably high,and the distribution of stress intensity is uneven.The stress regime is primarily characterized by σ_(H)>σ_(v)>σ_(h).The σ_(H) orientation is well-oriented in the WNW-ESE,which is roughly identical to other stress indicators.Moreover,theσH direction reflected by joint strikes and inferred based on the fault characteristics agrees fairly with the identified stress orientation.The modern stress field basically inherited the tectonic stress field of the Yanshanian and Himalayan periods but is principally dominated by the Himalayan period.Additionally,the calculatedμm ranges from 0.2 to 0.7,indicating that the possibility of shallow faults across this area being reactivated and experiencing shear failure is small overall under the current stress conditions.μm=0.2 and 0.5 are suggested as the lower and upper limits for predicting and analyzing future fault activity in the area,respectively.
基金funded by the Science and Technology Department of Yunnan Province(202303AA080006)the National Natural Science Foundation of China(41972312 and 41672329).
文摘A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe granites consist of monzogranite and leucogranite.Zircon U-Pb dating shows that the emplacement ages of the monzogranite and leucogranite are 502.0 Ma and 500.9 Ma,respectively.All samples have high SiO_(2) content and a weakly to strongly peraluminous character(A/CNK=1.08-1.23),consistent with S-type granites.The monzogranite has relatively high CaO,Sr,Ba,and CaO/Na_(2)O ratios but lower Rb.In contrast,the leucogranite has lower CaO,Sr,Ba,and CaO/Na_(2)O ratios but higher Rb.The similar ε_(Nd)(t)values(−9.3 to−8.4)and Pb isotopic compositions((^(206)Pb/^(204)Pb)t=18.03-19.36,(^(207)Pb/^(204)Pb)t=15.66-15.76,(^(208)Pb/^(204)Pb)t=37.97-38.55)suggest that the monzogranite formed through partial melting of crustal greywacke,while the leucogranite originated from partial melting of crustal pelite.Regional geological studies suggest that these S-type granites in Pinghe were emplaced in an active continental margin setting,associated with the westward subduction of the proto-Tethys oceanic slab.The geochemical characteristics of leucogranite are consistent with those of tungsten-tin-related granites,indicating significant metallogenic potential for W and Sn deposits.
基金National major basic-theory planning project Mechanism and Prediction of Strong Earthquake (95130105) and the Key Project from China Seismological Bureau (95040803).
文摘Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.
文摘The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.
基金supported by SNSF grant IZKOZ-2_154380partly supported by SNF 200021_149252
文摘To better understand Earth's present tectonic style-plate tectonics—and how it may have evolved from single plate(stagnant lid) tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment(plate) motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes;any other tectonic style is usefully called "stagnant lid" or "fragmented lid". In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects,which we informally call "planetoids" and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice(Jupiter, Saturn, Uranus, and Neptune)and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m^3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m^3 or greater from 20 icy planetoids(including the gaseous and icy giant planets) with ρ = 2200 kg/m^3 or less. We define the "Tectonic Activity Index"(TAI), scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing(inferred from impact crater density). Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate(rocky) planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is the dominant mode of heat loss and that plate tectonics is unusual. To make progress understanding Earth's tectonic history and the tectonic style of active exoplanets, we need to better understand the range and controls of active stagnant lid tectonics.
基金the Chinese Academy of Sciences (No. KXCX2-109) National Natural Science Foundation of China (No. 40304007 ,No.40172036)+1 种基金"Key Project of Science and Technology Research”(No. 01037) China Postdoctoral Science Foundation (No. 2003033238).
文摘Seventy-three large-superlarge deposits in China were formed in 4 metallogenic epochs, and located in 6 metallogenic domains. By combing their time-space distribution and the relevant data of crustal thickness, we discuss the control conditions of deep tectonics on superlarge deposits. The various spatial variation of the crustal thickness where deposits locate is closely related to their different tectonic setting. The crustal thickness of the region where deposits are in the Precatnbrian metallogenic epoch is 37.1 km and shows double-peak distribution, which is related to the different tectonic-mineralization processes in the Tarim-North China and Yangtze metallogenic domains. The crustal thickness of the region where deposits are in the Paleoproterozoic metallogenic epoch is 43.4 km and shows normal distribution, which is the result of 'pure' mineralization setting. The crustal thickness of the region where deposits are in the Late Palaeozoic-Early Mesozoic metallogenic epoch is about 41.2 km and shows multi-peak distribution, which can be related with dispersing distribution in the metallogenic domain of these superlarge deposits. The crustal thickness of the region where deposits are in the post-Indosinian metallogenic epoch is 37.3 km, and shows skew distribution, which resulted from different tectonic settings in eastern and western China.
基金This research was supported by the National Nature Foundation of China (49803031, 40372084) the Seismic Scientific United Fund (95-07-0425)+3 种基金 US National Science Foundation grant EAR-0125565 ETH Forschungskommission grant TH-4/03-01 Key Subject Program of Sichuan province Grant No. SZD0408 and the Program for the Subject of Ph.D. in Higher Education Institute, Grant No.20050616004.
文摘There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger.
基金supported by the National Natural Science Foundation of China (Nos.91755213,41672212,41572203)the MOST Special Fund (No.MSFGPMR02-3)+1 种基金the Opening Fund (Nos.GPMR201607,201701)the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences (Wuhan)
文摘Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantle. This process is the surface expression of modern-day heat loss from Earth. One of the biggest questions in Geosciences today is "when did plate tectonics begin on Earth" with a wide range of theories based on an equally diverse set of constraints from geology, geochemistry, numerical modeling, or pure speculation. In this contribution, we turn the coin over and ask "when was the last appearance in the geological record for which there is proof that plate tectonics did not operate on the planet as it does today". We apply the laws of uniformitarianism to the rock record to ask how far back in time is the geologic record consistent with presently-operating kinematics of plate motion, before which some other mechanisms of planetary heat loss may have been in operation. Some have suggested that evidence shows that there was no plate tectonics before 800 Ma ago, others sometime before 1.8–2.7 Ga, or before 2.7 Ga. Still others recognize evidence for plate tectonics as early as 3.0 Ga, 3.3–3.5 Ga, the age of the oldest rocks, or in the Hadean before 4.3 Ga. A key undiscussed question is: why is there such a diversity of opinion about the age at which plate tectonics can be shown to not have operated, and what criteria are the different research groups using to define plate tectonics, and to recognize evidence of plate tectonics in very old rocks? Here, we present and evaluate data from the rock record, constrained by relevant geochemical-isotopic data, and conclude that the evidence shows indubitably that plate tectonics has been operating at least since the formation of the oldest rocks, albeit with some differences in processes, compositions, and products in earlier times of higher heat generation and mantle temperature, weaker oceanic lithosphere, hotter subduction zones caused by more slab-melt generation, and under different biological and atmospheric conditions.
文摘This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in North China have been divided into three stages. The earliest Jurassic is marked by a period of magmatism quiescence (in 205-190 Ma) and regional uplift, which are considered to be the continuation of the “Indosinian movement” characterized by continent-continent collision between the North and South China blocks. The Early to Middle Jurassic (in 190-170 Ma) was predominated by weak lithospheric extension expressed by mantle-derived plutonism and volcanism along the Yanshan belt and alongside the Tan-Lu fault zone, normal faulting and graben formation along the Yinshan- Yanshan tectonic belt, depression and resuming of coal-bearing sedimentation in vast regions of the North China block (NCB). The Middle to Late Jurassic stage started at 165y.5 Ma and ended up before 136 Ma; it was dominated by intensive intraplate deformation resulting from multi-directional compressions. Two major deformation events have been identified. One is marked by stratigraphic unconformity beneath the thick Upper Jurassic molasic series in the foreland zones of the western Ordos thrust-fold belt and along the Yinshan-Yanshan belt; it was predated 160 Ma. The other one is indicated by stratigraphic unconformity at the base of the Lower Cretaceous and predated 135 Ma. During this last stage, two latitudinal tectonic belts, the Yinshan-Yanshan belt in the north and the Qinling-Dabie belt in the south, and the western margin of the Ordos basin were all activated by thrusting; the NCB itself was deformed by the NE to NNE-trending structural system involving thrusting, associated folding and sinistral strike-slip faulting, which were spatially partitioned. Foliated S-type granitic plutons aged 160-150 Ma were massively emplaced in the Jiao-Liao massif east of the Tan-Lu fault zone and indicate important crustal thickening in this part of the NCB. The Jurassic deformation patterns, different tectonic systems and multi-directional contractions in North China recorded far-field effects of synchronous convergences, toward the East Asian continent, of three different plates, the Siberian plate in the north, the paleo-Pacific oceanic plate in the east and the Lhasa block in the southwest. This Middle to Late Jurassic intraplate orogenesis and pervasive shortening deformation preceded lithospheric attenuation and thinning in East China, which most possibly started by the Early Cretaceous around 135 Ma.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 26106002
文摘When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).
基金funded by the National Basic Research Program of China(973 Program,No.2012CB416701)National Natural Science Foundation of China(Grant 40972132)was partly supported by the State Key Laboratory for Mineral Deposits Research of Nanjing University(No.2008-Ⅰ-01)
文摘During the Late Mesozoic Middle Jurassic--Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I) and intra-continental extensional basins (Type II). Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tufts and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous-Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geo- dynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc exten- sional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range tectonics between both shores of the Pacific, such as mantle plume formation, scales of extensional and igneous rock assemblages and the age of basin and range tectonics, were caused mainly by the Yellowstone mantle plume in the eastern shore of the Pacific.
基金National Natural Science Foundation (40772086)Common advanced projects of CNPC oil and gas exploration (07-01C-01-04)
文摘Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.
基金funded by the National Basic Research Program of China(No.2011CB403007)the State Key Program of National Natural Science of China(No.40830420)
文摘Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.