Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response ...Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.展开更多
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery...BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.展开更多
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d...The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of th...In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.展开更多
The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone ver...The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone vertical growth trajectories by detecting the stable isotope signatures(2H and 18O compositions)of different shells in 27 hailstones from 9hailstorms,which allowed us to capture the ambient temperature during hailstone growth.The vertical growth trajectories were obtained by comparing the isotopic compositions of water condensate in clouds,derived from the Adiabatic Model,with those measured in hailstones.Although hailstone growth was primarily observed in the–10°C to–30°C temperature layer,the embryo formation height and subsequent growth trajectories significantly varied among hailstones.Embryos formed over a wide range of temperatures(–8.7°C to–33.4°C);four originated at temperatures above–15°C and 16originated at temperatures below–20°C,suggesting ice nuclei composed of bioproteins and mineral dust,respectively.Among the 27 measured hailstones,3 exhibited minimal vertical movement,16 exhibited a monotonic rise or fall,and the remaining 8 exhibited alternating up-down trajectories;only one experienced“recycling”during up-down drifting.Trajectory analysis revealed that similar-sized hailstones from a single storm tended to form at similar heights,whereas those larger than 25 mm in diameter exhibited at least one period of upward growth.Vertical trajectories derived from isotopic analysis were corroborated by radar hydrometeor observations.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regiona...Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.展开更多
This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bound...This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.展开更多
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig...With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.展开更多
Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The s...Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.展开更多
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ...Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.展开更多
On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single...On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.展开更多
A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance m...A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error.展开更多
Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a t...Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.展开更多
BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelations...BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelationship remains unclear.In this study,we applied a dual-trajectory model to assess how neck pain and emotional state evolve together over time and how clinical interventions,particularly acupuncture,influence these trajectories.AIM To investigate the longitudinal relationship between neck pain and emotional state in patients with cervical spondylosis.METHODS This prospective cohort study included 472 patients with cervical spondylosis from eight Chinese hospitals.Participants received acupuncture or medication and were followed up at baseline,and at 1,2,4,6,and 8 weeks.Neck pain and emotional distress were assessed using the Northwick Park Neck Pain Questionnaire(NPQ)and the affective subscale of the Short-Form McGill Pain Questionnaire(SF-MPQ),respectively.Group-based trajectory models and dual trajectory analysis were used to identify and correlate pain-emotion trajectories.Multivariate logistic regression identified predictors of group membership.RESULTS Three trajectory groups were identified for NPQ and SF-MPQ scores(low,medium,and high).Higher NPQ trajectory was associated with older age(OR=1.058,P<0.001)and was significantly reduced by acupuncture(OR=0.382,P<0.001).Similarly,acupuncture lowered the odds of high SF-MPQ trajectory membership(OR=0.336,P<0.001),while age increased it(OR=1.037,P<0.001).Dual-trajectory analysis revealed bidirectional associations:69.1%of patients with low NPQ had low SF-MPQ scores,and 42.6%of patients with high SF-MPQ also had high NPQ scores.Gender was a predictor for medium SF-MPQ trajectory(OR=1.629,P=0.094).Occupation and education levels differed significantly across the trajectory groups(P<0.05).CONCLUSION Over time,neck pain and emotional distress are closely associated in patients with cervical spondylosis.Acupuncture alleviates both outcomes significantly,while age is a risk factor.Integrated approaches to pain and emotional management are encouraged.展开更多
Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data...Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data over the Arctic Ocean remain relatively scarce.Four Arctic scientific expeditions were conducted in the summer and early autumn of 2010,2012,2016,and 2018 via the Chinese research vessel Xue Long,during which the BC concentrations along the routes were measured via light absorption methods.In this work,the spatiotemporal distribution characteristics of BC over the Arctic Ocean were examined on the basis of these observations.The potential sources of BC along the various routes were analyzed via the weighted potential source contribution function and weighted concentrationweighted trajectory methods of the hybrid single-particle Lagrangian integrated trajectory model in conjunction with Arctic transport potential climate model simulations.The analysis results indicated that wildfires in the western Aleutian Islands,Siberia,and Far East regions were the primary contributors to the BC aerosol concentration observed along the Arctic expedition routes in summer,identifying these regions as major potential source areas.展开更多
To evaluate the heat performance of the lifting-body entry vehicle during the hypersonic gliding phase,entry flight heat tests involving the determination of the maximum peak-heat-flux entry trajectory with complex co...To evaluate the heat performance of the lifting-body entry vehicle during the hypersonic gliding phase,entry flight heat tests involving the determination of the maximum peak-heat-flux entry trajectory with complex constraints are essential.A significant obstacle is the uncertainty of passage time or energy states of the maximum peak entry heat flux point and waypoints.This paper showcases an endeavour to leverage disjunctive programming and combinatorial theory for the max-max type(maximum peak-heat-flux)Entry Trajectory Optimization(ETO)problems with complex constraints such as dynamic pressure,normal load,waypoints,and no-fly zones.The concept of a"generalized waypoint"is introduced,and the maximum peak-heat-flux point is regarded as a"generalized waypoint".Through the application of propositional calculus rules,the derivation of generalized waypoints incorporating various physical quantities and magnitudes such as heat flux density,longitude,and latitude is actualized in one disjunctive normal form,enabling resolution via a unified method.Consequently,a novel method based on combinatorial prior rules is proposed,utilizing Successive Mixed-Integer Nonlinear Programming(SMINLP)to optimize various heat entry test flight trajectories.Numerical experiments are provided to show the computational accuracy,stability,and adaptability of the proposed method in solving maxmax type entry optimal control problems.展开更多
Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflecti...Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.展开更多
基金Supported by the National Natural Science Foundation of China(No.51905211)A Project of the“20 Regulations for New Universities”Funding Program of Jinan(No.202228116).
文摘Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.
基金Supported by the Scientific Research Projects of the Health System in Pingshan District,No.2023122.
文摘BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.
基金supported by the National Key R&D Program of China(No.2022YFB3104502)the National Natural Science Foundation of China(No.62301251)+2 种基金the Natural Science Foundation of Jiangsu Province of China under Project(No.BK20220883)the open research fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2024D04)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
文摘In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.
基金supported by the National Natural Science Foundation of China(Grant No.42030607)the Beijing Municipal Science and Technology Commission(Grant No.Z251100004525005)the National Science Foundation/National Center for Atmospheric Research,and NASA(Grant No.80NSSC22M0129)。
文摘The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone vertical growth trajectories by detecting the stable isotope signatures(2H and 18O compositions)of different shells in 27 hailstones from 9hailstorms,which allowed us to capture the ambient temperature during hailstone growth.The vertical growth trajectories were obtained by comparing the isotopic compositions of water condensate in clouds,derived from the Adiabatic Model,with those measured in hailstones.Although hailstone growth was primarily observed in the–10°C to–30°C temperature layer,the embryo formation height and subsequent growth trajectories significantly varied among hailstones.Embryos formed over a wide range of temperatures(–8.7°C to–33.4°C);four originated at temperatures above–15°C and 16originated at temperatures below–20°C,suggesting ice nuclei composed of bioproteins and mineral dust,respectively.Among the 27 measured hailstones,3 exhibited minimal vertical movement,16 exhibited a monotonic rise or fall,and the remaining 8 exhibited alternating up-down trajectories;only one experienced“recycling”during up-down drifting.Trajectory analysis revealed that similar-sized hailstones from a single storm tended to form at similar heights,whereas those larger than 25 mm in diameter exhibited at least one period of upward growth.Vertical trajectories derived from isotopic analysis were corroborated by radar hydrometeor observations.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金supported by the National Natural Science Foundation of China(42161007)the Innovation Foundation of Higher Education Institutions of Gansu Province(2021B-081)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112).
文摘Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.
基金supported by the National Natural Science Foundation of China(Nos.51775021,52302511)the Fundamental Research Funds for the Central Universities,China(Nos.501JCGG2024129003,501JCGG2024129005,501JCGG2024129006),the Fundamental Research Funds for the Central Universities,China(No.YWF-24-JC-09)the National Key Research and Development Program of China(No.2018YFC1506401)。
文摘This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.
基金supported by the National Natural Science Foundation of China(Nos.62371323,62401380,U2433217,U2333209,and U20A20161)Natural Science Foundation of Sichuan Province,China(Nos.2025ZNSFSC1476)+2 种基金Sichuan Science and Technology Program,China(Nos.2024YFG0010 and 2024ZDZX0046)the Institutional Research Fund from Sichuan University(Nos.2024SCUQJTX030)the Open Fund of Key Laboratory of Flight Techniques and Flight Safety,CAAC(Nos.GY2024-01A).
文摘With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.
基金supported by the Key Research and Development Program of the Ministry of Science and Technology of China(grant number:2016YF0900605)the Key Research and Development Program of Hebei Province(grant number:192777129D)+1 种基金the Joint Fund for Iron and Steel of the Natural Science Foundation of Hebei Province(grant number:H2016209058)the National Natural Science Foundation for Regional Joint Fund of China(grant number:U22A20364)。
文摘Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.
基金Philosophy and Social Science Planning Projects in Yunnan Province,No.QN202428China Postdoctoral Science Foundation,No.2024M752918。
文摘Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.
基金supported by the National Natural Science Foundation of China (Grant No.42394122)CAS Project of Stable Support for Youth Team in Basic Research Field (YSRR-018)+1 种基金the National Key R&D Program of China (2023YFC3007703)the Chinese Meridian Project, and the International Partnership Program of Chinese Academy of Sciences (183311KYSB20200003)。
文摘On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.
基金National Natural Science Foundation of China(Nos.61773387 and 62022061).
文摘A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error.
基金co-supported by the National Natural Science Foundation of China(No.12072365)the Technology Innovation Team of Manned Space Engineering,China。
文摘Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.
基金Supported by 2022 Chinese Medicine Scientific Research Project of Hebei Administration of Traditional Chinese Medicine,No.20221572025 Annual Scientific Research Project of Higher Education Institutions in Hebei Province,No.QN2025654.
文摘BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelationship remains unclear.In this study,we applied a dual-trajectory model to assess how neck pain and emotional state evolve together over time and how clinical interventions,particularly acupuncture,influence these trajectories.AIM To investigate the longitudinal relationship between neck pain and emotional state in patients with cervical spondylosis.METHODS This prospective cohort study included 472 patients with cervical spondylosis from eight Chinese hospitals.Participants received acupuncture or medication and were followed up at baseline,and at 1,2,4,6,and 8 weeks.Neck pain and emotional distress were assessed using the Northwick Park Neck Pain Questionnaire(NPQ)and the affective subscale of the Short-Form McGill Pain Questionnaire(SF-MPQ),respectively.Group-based trajectory models and dual trajectory analysis were used to identify and correlate pain-emotion trajectories.Multivariate logistic regression identified predictors of group membership.RESULTS Three trajectory groups were identified for NPQ and SF-MPQ scores(low,medium,and high).Higher NPQ trajectory was associated with older age(OR=1.058,P<0.001)and was significantly reduced by acupuncture(OR=0.382,P<0.001).Similarly,acupuncture lowered the odds of high SF-MPQ trajectory membership(OR=0.336,P<0.001),while age increased it(OR=1.037,P<0.001).Dual-trajectory analysis revealed bidirectional associations:69.1%of patients with low NPQ had low SF-MPQ scores,and 42.6%of patients with high SF-MPQ also had high NPQ scores.Gender was a predictor for medium SF-MPQ trajectory(OR=1.629,P=0.094).Occupation and education levels differed significantly across the trajectory groups(P<0.05).CONCLUSION Over time,neck pain and emotional distress are closely associated in patients with cervical spondylosis.Acupuncture alleviates both outcomes significantly,while age is a risk factor.Integrated approaches to pain and emotional management are encouraged.
基金supported by the National Natural Science Foundation of China (No.42201151)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Nos.2023Z004 and 2024Z007)。
文摘Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data over the Arctic Ocean remain relatively scarce.Four Arctic scientific expeditions were conducted in the summer and early autumn of 2010,2012,2016,and 2018 via the Chinese research vessel Xue Long,during which the BC concentrations along the routes were measured via light absorption methods.In this work,the spatiotemporal distribution characteristics of BC over the Arctic Ocean were examined on the basis of these observations.The potential sources of BC along the various routes were analyzed via the weighted potential source contribution function and weighted concentrationweighted trajectory methods of the hybrid single-particle Lagrangian integrated trajectory model in conjunction with Arctic transport potential climate model simulations.The analysis results indicated that wildfires in the western Aleutian Islands,Siberia,and Far East regions were the primary contributors to the BC aerosol concentration observed along the Arctic expedition routes in summer,identifying these regions as major potential source areas.
基金funded by the Key Laboratory of Cross-Domain Flight Interdisciplinary Technology,China(No.2024-KF02201)the National Natural Science Foundation of China(No.61973326)。
文摘To evaluate the heat performance of the lifting-body entry vehicle during the hypersonic gliding phase,entry flight heat tests involving the determination of the maximum peak-heat-flux entry trajectory with complex constraints are essential.A significant obstacle is the uncertainty of passage time or energy states of the maximum peak entry heat flux point and waypoints.This paper showcases an endeavour to leverage disjunctive programming and combinatorial theory for the max-max type(maximum peak-heat-flux)Entry Trajectory Optimization(ETO)problems with complex constraints such as dynamic pressure,normal load,waypoints,and no-fly zones.The concept of a"generalized waypoint"is introduced,and the maximum peak-heat-flux point is regarded as a"generalized waypoint".Through the application of propositional calculus rules,the derivation of generalized waypoints incorporating various physical quantities and magnitudes such as heat flux density,longitude,and latitude is actualized in one disjunctive normal form,enabling resolution via a unified method.Consequently,a novel method based on combinatorial prior rules is proposed,utilizing Successive Mixed-Integer Nonlinear Programming(SMINLP)to optimize various heat entry test flight trajectories.Numerical experiments are provided to show the computational accuracy,stability,and adaptability of the proposed method in solving maxmax type entry optimal control problems.
基金supported in part by Boeing Company and Nanjing University of Aeronautics and Astronautics(NUAA)through the Research on Decision Support Technology of Air Traffic Operation Management in Convective Weather under Project 2022-GT-129in part by the Postgraduate Research and Practice Innovation Program of NUAA(No.xcxjh20240709)。
文摘Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.