期刊文献+
共找到104,024篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing prescribed-time trajectory tracking control for a stratospheric airship with prescribed performance 被引量:1
1
作者 Liran SUN Kangwen SUN +2 位作者 Xiao GUO Jiace YUAN Ming ZHU 《Chinese Journal of Aeronautics》 2025年第7期557-571,共15页
This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bound... This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation. 展开更多
关键词 Prescribed-time control Prescribed performance trajectory tracking Barrier Lyapunov function Stratospheric airship
原文传递
High-precision trajectory tracking control of helicopter based on ant colony optimization-slime mould algorithm
2
作者 Binwu REN Siliang DU +2 位作者 Zhuangzhuang CUI Yousong XU Qijun ZHAO 《Chinese Journal of Aeronautics》 2025年第1期395-408,共14页
To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking contro... To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks. 展开更多
关键词 Flight control systems HELICOPTER ADRC trajectory tracking ACO-SMA Spiral ascent "8"shape climbing
原文传递
Fishing Ship Trajectory Tracking Control Based on the Closed-Loop Gain Shaping Algorithm Under Rough Sea
3
作者 SONG Chun-yu GUO Te-er SUI Jiang-hua 《China Ocean Engineering》 2025年第2期365-372,共8页
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working... This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships. 展开更多
关键词 trajectory tracking control nonlinear feedback control fishing ship closed-loop gain shaping algorithm rough sea
在线阅读 下载PDF
Simulation-Based Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm
4
作者 BANKOLE Adesola Temitope IGBONOBA Ezekiel Endurance Chukwuemeke 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1179-1187,共9页
A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the ... A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the robot arm.The H-infinity controller has the ability to achieve a high performance and robustness in the presence of disturbances and uncertainties,while the PD controller is effective in stabilizing the manipulator.Simulation results using Matlab and Simulink show that the proposed hybrid controller,which integrates the advantages of both PD and H-infinity controllers,has the lowest rise time for the second link,the lowest settling time for the two links,the lowest peak time for both links,and the fastest decay of the error response.In addition,the hybrid control scheme also has the lowest mean square error value,with a 53.3%improvement over the H-infinity controller and a 91.8%improvement over the PD controller,indicating an improved trajectory tracking performance when compared with pure PD and pure H-infinity controllers,respectively.It was also found that the hybrid controller has the lowest integral absolute error,integral square error,integral time absolute error,and integral time square error for the second link,while the error values for the first link are satisfactory,showing a superior performance of the hybrid controller above the PD and H-infinity controllers,respectively. 展开更多
关键词 robot arm trajectory tracking proportional derivative(PD)control H-infinity control hybrid PD/H-infinity control
原文传递
Fault-tolerant control of wheeled mobile robots with prescribed trajectory tracking performance
5
作者 Jin-Xi Zhang Tianyou Chai 《Journal of Automation and Intelligence》 2025年第2期73-81,共9页
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ... The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings. 展开更多
关键词 Fault-tolerant control Prescribed performance trajectory tracking Wheeled mobile robots
在线阅读 下载PDF
Trajectory Tracking Control of Parking Automated Guided Vehicles Using Nonlinear Disturbance Observer-based Sliding Mode
6
作者 Xudong Hu Bo Zhu +1 位作者 Dongkui Tan Nong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第5期362-378,共17页
Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and a... Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy. 展开更多
关键词 Parking AGV trajectory tracking Nonlinear disturbance observer Sliding mode
在线阅读 下载PDF
Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping
7
作者 Zengxuan Zhao Xiuying Zhang +4 位作者 Pengchen Zhao Chunyang Wang Chunlei Xia Mushtaq Rana Imran Joelous Malamula Nyasulu 《Chinese Physics B》 2025年第5期92-95,共4页
The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversari... The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions. 展开更多
关键词 trajectory tracking optimal path two-dimensional barrier escaping deep learning
原文传递
Robust Tube-MPC Trajectory Tracking Control for Four-Wheel Independent Steering Vehicles on Intermittent Snowy and Icy Roads
8
作者 Xiaochuan Zhou Ruiqi Liu +3 位作者 Jinyu Zhou Ziyu Zhang Chunyan Wang Wanzhong Zhao 《Chinese Journal of Mechanical Engineering》 2025年第5期64-82,共19页
Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy road... Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy roads,the presence of time-varying adhesion coefficients,time-varying cornering stiffness,and the irregularities due to ice and snow accumulation introduce multiple uncertainties into the steering system,significantly degrading the trajectory tracking performance of 4WIS vehicles.In response,this paper proposes a robust Tube Model Predictive Control(Tube-MPC)trajectory tracking control method for 4WIS.In this method,a Bi-directional Long Short-Term Memory neural network is established for online estimation of tire cornering stiffness under different road adhesion coefficients,providing accurate estimation of time-varying cornering stiffness for each wheel to mitigate the uncertainties of time-varying adhesion coefficients and cornering stiffness.Additionally,considering the road irregularities caused by snow accumulation on intermittent icy and snowy roads,a trajectory tracking controller that integrates Tube-MPC and robust Sliding Mode Control is proposed.The nominal MPC model,developed from the estimated tire cornering stiffness,utilizes the sliding surface and the optimal auxiliary control unit law for the tube is derived from the reaching law in Tube-MPC,aiming to minimize the trajectory tracking error while enhancing the controller’s robustness against road uncertainties.The experiments show that the proposed method outperforms the Tube-MPC algorithm in terms of trajectory accuracy and robustness.This method demonstrates excellent trajectory tracking accuracy under intermittent icy and snowy road conditions,and it lays a theoretical foundation for future studies on vehicle stability and trajectory tracking under such road conditions. 展开更多
关键词 Intermittent icy and snowy roads Vehicle trajectory tracking Robust Tube-MPC Cornering stiffness estimation
在线阅读 下载PDF
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
9
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Tire wear aware trajectory tracking control for Multi-axle Swerve-drive Autonomous Mobile Robots
10
作者 Tianxin Hu Xinhang Xu +3 位作者 Thien-Minh Nguyen Fen Liu Shenghai Yuan Lihua Xie 《Journal of Automation and Intelligence》 2025年第4期243-253,共11页
Multi-axle Swerve-drive Autonomous Mobile Robots(MS-AMRs)equipped with independently steerable wheels are commonly used for high-payload transportation.In this work,we present a novel Model Predictive Control(MPC)meth... Multi-axle Swerve-drive Autonomous Mobile Robots(MS-AMRs)equipped with independently steerable wheels are commonly used for high-payload transportation.In this work,we present a novel Model Predictive Control(MPC)method for MS-AGV trajectory tracking that takes tire wear minimization consideration in the objective function.To speed up the problem-solving process,we propose a hierarchical controller design and simplify the dynamic model by integrating the magic formula tire model and simplified tire wear model.In the experiment,the proposed method can be solved by simulated annealing in real-time on a normal personal computer and by incorporating tire wear into the objective function,tire wear is reduced by 19.19%while maintaining the tracking accuracy in curve-tracking experiments.In the more challenging scene:the desired trajectory is offset by 60 degrees from the vehicle's heading,the reduction in tire wear increased to 65.20%compared to the kinematic model without considering the tire wear optimization. 展开更多
关键词 Multi-axle AMRs Dynamic model tracking MPC Tire wear
在线阅读 下载PDF
Bio-Inspired Decentralized Model Predictive Flocking Control for UAV Swarm Trajectory Tracking
11
作者 Lanxiang Zheng Ruidong Mei +2 位作者 Mingxin Wei Zhijun Zhao Bingzhi Zou 《Journal of Bionic Engineering》 2025年第5期2660-2677,共18页
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred... Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios. 展开更多
关键词 BIO-INSPIRED UAV swarm Decentralized model predictive flocking control Path tracking
在线阅读 下载PDF
Neural Network Adaptive Hierarchical Sliding Mode Control for the Trajectory Tracking of a Tendon-Driven Manipulator
12
作者 Yudong Zhang Leiying He +2 位作者 Jianneng Chen Bo Yan Chuanyu Wu 《Chinese Journal of Mechanical Engineering》 2025年第2期295-314,共20页
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ... Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively. 展开更多
关键词 Elastic tendon-driven manipulator Flexible joint Hierarchical sliding mode control Neural network adaptive control tracking control
在线阅读 下载PDF
DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning
13
作者 Huaxiong Liao Xiangxuan Zhong +4 位作者 Xueqi Chen Yirui Huang Yuwei Lin Jing Zhang Bruce Gu 《Computers, Materials & Continua》 2026年第1期1530-1550,共21页
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re... The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence. 展开更多
关键词 PRIVACY-PRESERVING trajectory generation differential privacy imitation learning Markov chain
在线阅读 下载PDF
Trajectory and influencing factors of changes in anxiety and depression in elderly patients after lumbar interbody fusion
14
作者 Xiao-Feng Liu Yan-Hua Wu +4 位作者 Guang-Xi Huang Bin Yu Hui-Juan Xu Meng-Hua Qiu Lin Kang 《World Journal of Psychiatry》 2026年第1期312-321,共10页
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery... BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life. 展开更多
关键词 Lumbar interbody fusion Elderly patients ANXIETY DEPRESSION trajectory of change Influencing factors
暂未订购
Long-range masked autoencoder for pre-extraction of trajectory features in within-visual-range maneuver recognition
15
作者 Feilong Jiang Hutao Cui +2 位作者 Yuqing Li Minqiang Xu Rixin Wang 《Defence Technology(防务技术)》 2026年第1期301-315,共15页
In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,... In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems. 展开更多
关键词 Within-visual-range maneuver recognition trajectory feature pre-extraction Long-range masked autoencoder Kalman filter constraints Intelligent air combat
在线阅读 下载PDF
Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking
16
作者 Qin Hu Hongshan Kong 《Computers, Materials & Continua》 2026年第1期870-900,共31页
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba... To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions. 展开更多
关键词 Cross-category dynamic binding joint feature modeling face-pedestrian association multi object tracking occlusion robustness
在线阅读 下载PDF
A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot 被引量:6
17
作者 战强 刘增波 蔡尧 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期472-480,共9页
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic... Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular. 展开更多
关键词 spherical mobile robot trajectory tracking control back-stepping Lyapunov function
在线阅读 下载PDF
An adaptive switching control approach for trajectory tracking of robotic manipulators 被引量:1
18
作者 杨振 费树岷 +2 位作者 王芳 鲍安平 刘顾全 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期183-186,共4页
In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error a... In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carded out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads. 展开更多
关键词 adaptive control switch control roboticmanipulator trajectory tracking
在线阅读 下载PDF
An Angle Trajectory Tracking for a 3-DOF Pneumatic Motion Platform by the NI Compact RIO Embedded System 被引量:1
19
作者 Yuan-Ming Cheng Yu-Song Chen 《Journal of Mechanics Engineering and Automation》 2013年第1期14-21,共8页
An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension o... An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension or shortening of the three pneumatic cylinders. The response of pneumatic cylinder is relatively slow for motor actuator and can get a good single-axis trajectory control by traditional P controller, but the trajectory tracking of platform has a delay phenomenon for angle instantly larger change. To improve this situation in this study, Fuzzy system is used in the trajectory pre-compensation. By the angle changes and the angle rates of change in Fuzzy systems, the value of a pre-compensation output and each axis value are calculated using the Jacobian matrix after compensation in each axis. Through experiments, this Fuzzy pre-compensation method is proved to be able to improve the delay situation of angle trajectory tracking. 展开更多
关键词 Parallel mechanism Fuzzy controller Compact RIO trajectory tracking.
在线阅读 下载PDF
Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles 被引量:23
20
作者 Wei He Xinxing Mu +1 位作者 Liang Zhang Yao Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期148-156,共9页
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ... This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Flapping-wing micro aerial vehicles(FWMAVs) MODELING neural networks trajectory tracking
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部