1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig...With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.展开更多
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements o...In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making i...Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making in the planning and control layers.However,most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction.These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms,leading to potentially unrealistic predictions.To address these limitations,we propose the Driving Style Guided Trajectory Prediction framework(DSG-TP),which incorporates a probabilistic representation of driving style into trajectory prediction.Our approach enhances the model’s ability to interact with vehicle behavior characteristics in complex traffic scenarios,significantly improving prediction reliability in critical decision-making situations by incorporating the driving style recognition module.Experimental evaluations on the Argoverse 1 dataset demonstrate that our method outperforms existing approaches in both prediction accuracy and computational efficiency.Through extensive ablation studies,we further validate the contribution of each module to overall performance.Notably,in decision-sensitive scenarios,DSG-TP more accurately captures vehicle behavior patterns and generates trajectory predictions that align with different driving styles,providing crucial support for safe decision-making in autonomous driving systems.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv...Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.展开更多
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. ...Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Iden...Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.展开更多
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Au...As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time.展开更多
A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectiona...A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectional vibration reduction for a tuned rolling mass damper with a single concave structure.First,the Bi-TRMD device is introduced,and its three-dimensional(3D)mechanical model is established.The motion equations of the model are de-rived using the Gibbs-Appell equation,and a trajectory pre-diction method for the sphere and structure within the model is developed.This method demonstrates that the rolling motion of the sphere around orthogonal axes is nearly indepen-dent within a limited range,enabling the simplification of the 3D model into a two-dimensional(2D)model.The accuracy of this simplification is validated through case analysis.The vibration reduction parameters are optimized using the 2D model and Den Hartog theory,leading to the derivation of mathematical expressions for the optimal frequency ratio and damping ratio.Subsequently,the bidirectional vi-bration reduction performance of the Bi-TRMD is analyzed.The results show that under white noise excitation,the Bi-TRMD achieves a bidirectional peak acceleration reduction rate that is 9.92%and 7.79%higher than that of translational tuned mass dampers(TMD)with the same mass.These findings demonstrate that the proposed Bi-TRMD ef-fectively achieves two-directional vibration reduction with a single concave structure,offering superior vibration reduction performance.展开更多
The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an ...The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an improved Long Short-Time Memory(LSTM)network for trajectory prediction pipeline is proposed for the interception of a skip gliding hypersonic target.Firstly,for trajectory prediction required by intercepting guidance laws,the altitude,velocity and velocity direction of the target are formulated in the form of analytic functions,consisting of linear decay terms and amplitude decay sinusoidal terms.Then,the dynamic characteristics of the model parameters are analyzed,and the target trajectory prediction pipeline is proposed with the prediction error considered.Finally,an improved LSTM network is designed to estimate parameters in a dynamically-updated manner,and estimation results are used for the calculation of the final trajectory prediction pipeline.The proposed prediction algorithm provides information on the velocity vector for midcourse guidance with the effect of prediction errors on interception taken into account.Simulation is conducted and the results show the high accuracy of the algorithm in HGVs’trajectory prediction which is conducive to increasing the interception success rate.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyz...Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyzes the motion characteristics of the skipping gliding NSHV and verifies that the aerodynamic acceleration of the target has a relatively stable rule.On this basis,EMD is used to extract the trend of aerodynamic acceleration into multiple sub-items,and aggregate sub-items with similar attributes.Then,a prior basis function is set according to the aerodynamic acceleration stability rule,and the aggregated data are fitted by the basis function to predict its future state.After that,the prediction data of the aerodynamic acceleration are used to drive the system to predict the target trajectory.Finally,experiments verify the effectiveness of the method.In addition,the distribution of prediction errors in space is discussed,and the reasons are analyzed.展开更多
In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisio...In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods.展开更多
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround...Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.展开更多
The movement of pedestrians involves temporal continuity,spatial interactivity,and random diversity.As a result,pedestrian trajectory prediction is rather challenging.Most existing trajectory prediction methods tend t...The movement of pedestrians involves temporal continuity,spatial interactivity,and random diversity.As a result,pedestrian trajectory prediction is rather challenging.Most existing trajectory prediction methods tend to focus on just one aspect of these challenges,ignoring the temporal information of the trajectory and making too many assumptions.In this paper,we propose a recurrent attention and interaction(RAI)model to predict pedestrian trajectories.The RAI model consists of a temporal attention module,spatial pooling module,and randomness modeling module.The temporal attention module is proposed to assign different weights to the input sequence of a target,and reduce the speed deviation of different pedestrians.The spatial pooling module is proposed to model not only the social information of neighbors in historical frames,but also the intention of neighbors in the current time.The randomness modeling module is proposed to model the uncertainty and diversity of trajectories by introducing random noise.We conduct extensive experiments on several public datasets.The results demonstrate that our method outperforms many that are state-ofthe-art.展开更多
The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the laneexchanging scenario.The nearby vehicle trajectory needs to be predicted,from which the autonomous vehi...The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the laneexchanging scenario.The nearby vehicle trajectory needs to be predicted,from which the autonomous vehicle is controlled to prevent possible collisions.This paper proposes a lane-exchanging driving strategy for the autonomous vehicle to cooperate with the nearby vehicle by integrating vehicle trajectory prediction and motion control.A trajectory prediction method is developed to anticipate the nearby vehicle trajectory.The Gaussian mixture model(GMM),together with the vehicle kinematic model,are synthesized to predict the nearby vehicle trajectory.A potential-feldbased model predictive control(MPC)approach is utilized by the autonomous vehicle to conduct the lane-exchanging maneuver.The potential feld of the nearby vehicle is considered in the controller design for collision avoidance.On-road driving data verifcation shows that the nearby vehicle trajectory can be predicted by the proposed method.CarSim®simulations validate that the autonomous vehicle can perform the lane-exchanging maneuver and avoid the nearby vehicle using the proposed driving strategy.The autonomous vehicle can thus safely perform the laneexchanging maneuver and avoid the nearby vehicle.展开更多
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).
基金supported by the National Natural Science Foundation of China(Nos.62371323,62401380,U2433217,U2333209,and U20A20161)Natural Science Foundation of Sichuan Province,China(Nos.2025ZNSFSC1476)+2 种基金Sichuan Science and Technology Program,China(Nos.2024YFG0010 and 2024ZDZX0046)the Institutional Research Fund from Sichuan University(Nos.2024SCUQJTX030)the Open Fund of Key Laboratory of Flight Techniques and Flight Safety,CAAC(Nos.GY2024-01A).
文摘With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.
基金supported in part by the National Science Foundation of China(Grant No.62172450)the Key R&D Plan of Hunan Province(Grant No.2022GK2008)the Nature Science Foundation of Hunan Province(Grant No.2020JJ4756)。
文摘In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.52267003.
文摘Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making in the planning and control layers.However,most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction.These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms,leading to potentially unrealistic predictions.To address these limitations,we propose the Driving Style Guided Trajectory Prediction framework(DSG-TP),which incorporates a probabilistic representation of driving style into trajectory prediction.Our approach enhances the model’s ability to interact with vehicle behavior characteristics in complex traffic scenarios,significantly improving prediction reliability in critical decision-making situations by incorporating the driving style recognition module.Experimental evaluations on the Argoverse 1 dataset demonstrate that our method outperforms existing approaches in both prediction accuracy and computational efficiency.Through extensive ablation studies,we further validate the contribution of each module to overall performance.Notably,in decision-sensitive scenarios,DSG-TP more accurately captures vehicle behavior patterns and generates trajectory predictions that align with different driving styles,providing crucial support for safe decision-making in autonomous driving systems.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
文摘Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51890915,51490672,and51761135011)the Fundamental Research Funds for the Central Universities
文摘Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
基金the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-004)Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155857,Artificial Intelligence Convergence Innovation Human Resources Development(Chungnam National University)).
文摘Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
文摘As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time.
基金The National Key Research and Development Pro-gram of China(No.2022YFC3801201)the National Natural Science Foundation of China(No.51921006,52478505)+1 种基金the Natural Science Foundation of Guangdong Province(No.2022A1515010403)Shenzhen Collaborative Innovation Project(No.CJGJZD20220517142401002).
文摘A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectional vibration reduction for a tuned rolling mass damper with a single concave structure.First,the Bi-TRMD device is introduced,and its three-dimensional(3D)mechanical model is established.The motion equations of the model are de-rived using the Gibbs-Appell equation,and a trajectory pre-diction method for the sphere and structure within the model is developed.This method demonstrates that the rolling motion of the sphere around orthogonal axes is nearly indepen-dent within a limited range,enabling the simplification of the 3D model into a two-dimensional(2D)model.The accuracy of this simplification is validated through case analysis.The vibration reduction parameters are optimized using the 2D model and Den Hartog theory,leading to the derivation of mathematical expressions for the optimal frequency ratio and damping ratio.Subsequently,the bidirectional vi-bration reduction performance of the Bi-TRMD is analyzed.The results show that under white noise excitation,the Bi-TRMD achieves a bidirectional peak acceleration reduction rate that is 9.92%and 7.79%higher than that of translational tuned mass dampers(TMD)with the same mass.These findings demonstrate that the proposed Bi-TRMD ef-fectively achieves two-directional vibration reduction with a single concave structure,offering superior vibration reduction performance.
基金co-supported by the National Natural Science Foundation of China(No.61427809).
文摘The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an improved Long Short-Time Memory(LSTM)network for trajectory prediction pipeline is proposed for the interception of a skip gliding hypersonic target.Firstly,for trajectory prediction required by intercepting guidance laws,the altitude,velocity and velocity direction of the target are formulated in the form of analytic functions,consisting of linear decay terms and amplitude decay sinusoidal terms.Then,the dynamic characteristics of the model parameters are analyzed,and the target trajectory prediction pipeline is proposed with the prediction error considered.Finally,an improved LSTM network is designed to estimate parameters in a dynamically-updated manner,and estimation results are used for the calculation of the final trajectory prediction pipeline.The proposed prediction algorithm provides information on the velocity vector for midcourse guidance with the effect of prediction errors on interception taken into account.Simulation is conducted and the results show the high accuracy of the algorithm in HGVs’trajectory prediction which is conducive to increasing the interception success rate.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
基金supported by the National High-Tech R&D Program of China(2015AA70560452015AA8017032P)the Postgraduate Funding Project(JW2018A039)。
文摘Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyzes the motion characteristics of the skipping gliding NSHV and verifies that the aerodynamic acceleration of the target has a relatively stable rule.On this basis,EMD is used to extract the trend of aerodynamic acceleration into multiple sub-items,and aggregate sub-items with similar attributes.Then,a prior basis function is set according to the aerodynamic acceleration stability rule,and the aggregated data are fitted by the basis function to predict its future state.After that,the prediction data of the aerodynamic acceleration are used to drive the system to predict the target trajectory.Finally,experiments verify the effectiveness of the method.In addition,the distribution of prediction errors in space is discussed,and the reasons are analyzed.
基金This work was supported by the National Natural Science Foundation of China(51975310 and 52002209).
文摘In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods.
基金supported by the National Key Research and Development Program of China(2018AAA0101005,2018AAA0102404)the Program of the Huawei Technologies Co.Ltd.(FA2018111061SOW12)+1 种基金the National Natural Science Foundation of China(61773054)the Youth Research Fund of the State Key Laboratory of Complex Systems Management and Control(20190213)。
文摘Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.
基金supported by the National NaturalScience Foundation of China(U1811463)the Fundamental Research Funds for the Central Universities(12060093192)。
文摘The movement of pedestrians involves temporal continuity,spatial interactivity,and random diversity.As a result,pedestrian trajectory prediction is rather challenging.Most existing trajectory prediction methods tend to focus on just one aspect of these challenges,ignoring the temporal information of the trajectory and making too many assumptions.In this paper,we propose a recurrent attention and interaction(RAI)model to predict pedestrian trajectories.The RAI model consists of a temporal attention module,spatial pooling module,and randomness modeling module.The temporal attention module is proposed to assign different weights to the input sequence of a target,and reduce the speed deviation of different pedestrians.The spatial pooling module is proposed to model not only the social information of neighbors in historical frames,but also the intention of neighbors in the current time.The randomness modeling module is proposed to model the uncertainty and diversity of trajectories by introducing random noise.We conduct extensive experiments on several public datasets.The results demonstrate that our method outperforms many that are state-ofthe-art.
基金Supported by Project of National Natural Science Foundation of China(Grand No.52102469)Science and Technology Major Project of Guangxi(Grant Nos.AB21196029 and AA18242033)State Key Laboratory of Automotive Safety and Energy(Grant No.KF2014).
文摘The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the laneexchanging scenario.The nearby vehicle trajectory needs to be predicted,from which the autonomous vehicle is controlled to prevent possible collisions.This paper proposes a lane-exchanging driving strategy for the autonomous vehicle to cooperate with the nearby vehicle by integrating vehicle trajectory prediction and motion control.A trajectory prediction method is developed to anticipate the nearby vehicle trajectory.The Gaussian mixture model(GMM),together with the vehicle kinematic model,are synthesized to predict the nearby vehicle trajectory.A potential-feldbased model predictive control(MPC)approach is utilized by the autonomous vehicle to conduct the lane-exchanging maneuver.The potential feld of the nearby vehicle is considered in the controller design for collision avoidance.On-road driving data verifcation shows that the nearby vehicle trajectory can be predicted by the proposed method.CarSim®simulations validate that the autonomous vehicle can perform the lane-exchanging maneuver and avoid the nearby vehicle using the proposed driving strategy.The autonomous vehicle can thus safely perform the laneexchanging maneuver and avoid the nearby vehicle.