The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d...The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.展开更多
Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path...Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications.展开更多
The hyper-redundant manipulator(HRM)can explore narrow and curved pipelines by leveraging its high flexibility and redundancy.However,planning collision-free motion trajectories for HRMs in confined environments remai...The hyper-redundant manipulator(HRM)can explore narrow and curved pipelines by leveraging its high flexibility and redundancy.However,planning collision-free motion trajectories for HRMs in confined environments remains a significant challenge.To address this issue,a pipeline inspection approach that combines nonlinear model predictive control(NMPC)with the snake-inspired crawling algorithm(SCA)is proposed.The approach consists of three processes:insertion,inspection,and exit.The insertion and exit processes utilize the SCA,inspired by snake motion,to significantly reduce path planning time.The inspection process employs NMPC to generate collision-free motion.The prototype HRM is developed,and inspection experiments are conducted in various complex pipeline scenarios to validate the effectiveness and feasibility of the proposed method.Experimental results demonstrate that the approach effectively minimizes the computational cost of path planning,offering a practical solution for HRM applications in pipeline inspection.展开更多
The automatic and rapid generation of excavation trajectories is the foundation for achieving an intelligent excavator.To obtain high-performance trajectories that enhance operational capacity while avoiding the numer...The automatic and rapid generation of excavation trajectories is the foundation for achieving an intelligent excavator.To obtain high-performance trajectories that enhance operational capacity while avoiding the numerous issues present in existing methods for generating effective excavation paths,this paper proposes a trajectory generation method for excavators based on imitation learning,using the mole as a bionic prototype.Given the high excavation efficiency of moles,this paper first analyzes the structural characteristics of the mole’s forelimbs,its digging principles,morphology,and trajectory patterns.Subsequently,a higher-order polynomial is employed to fit and optimize the mole’s excavation trajectory.Next,imitation learning is conducted on sample trajectories based on Dynamic Movement Primitives,followed by the introduction of an obstacle avoidance algorithm.Simulation experiments and comparisons demonstrate that the mole-inspired trajectory method used in this paper performs well and possesses the ability to generate obstacle avoidance trajectories,as well as the convenience of transferring across different machine models.展开更多
Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,a...Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,are limited by a high center of gravity,which increases the risk of rollover.Road bulges,sinkholes,and unexpected debris all present additional challenges for autonomous trucks’operational design,which current perception and decisionmaking algorithms often overlook.To mitigate rollover risks and improve adaptability to damaged roads,this paper presents a novel Road Obstacle-Involved Trajectory Planner(ROITP).The planner categorizes road obstacles using a learning-based algorithm.A discrete optimization algorithm selects a multi-objective optimal trajectory while taking into account constraints and objective functions derived from truck dynamics.Validation across various scenarios on a hardware-in-loop platform demonstrates that the proposed planner is effective and feasible for real-time implementation.展开更多
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki ...1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.展开更多
The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in mee...The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.展开更多
A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three...A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.展开更多
Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude distur...Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude disturbance is established as a function of joint angles, collision direction and relative velocity between robotic hand and the target.Secondly, on the premise of keeping correct capture pose, a novel optimization factor in null space is designed to minimize base attitude disturbance and ensure that the joint angles do not exceed their limits simultaneously.After reaching the balance state, a desired configuration is achieved at the contact point.Thereafter, particle swarm optimization(PSO) algorithm is employed to solve the pre-impact trajectory planning from its initial configuration to the desired configuration to achieve the minimized base attitude disturbance caused by impact and the correct capture pose simultaneously.Finally, the proposed method is applied to a 7-dof free-floating space manipulator and the simulation results verify the effectiveness.展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of...An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximizatio...Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.展开更多
Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementatio...Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementations of UAV/UGV cooperative path planning is delivering medical or emergency supplies during disasters such as wildfires,the focus of this paper.However,wildfires themselves pose risk to the UAVs/UGVs and their paths should be planned to avert the risk as well as complete the mission.In this paper,wildfire growth is simulated using a coupled Partial Differential Equation(PDE)model,widely used in literature for modeling wildfires,in a grid environment with added process and measurement noise.Using principles of Proper Orthogonal Decomposition(POD),and with an appropriate choice of decomposition modes,a low-dimensional equivalent fire growth model is obtained for the deployment of the space-time Kalman Filtering(KF)paradigm for estimation of wildfires using simulated data.The KF paradigm is then used to estimate and predict the propagation of wildfire based on local data obtained from a camera mounted on the UAV.This information is then used to obtain a safe path for the UGV that needs to travel from an initial location to the final position while the UAV’s path is planned to gather information on wildfire.Path planning of both UAV and UGV is carried out using a PDE based method that allows incorporation of threats due to wildfire and other obstacles in the form of risk function.The results from numerical simulation are presented to validate the proposed estimation and path planning methods.展开更多
A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us...A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.展开更多
This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequentia...This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.展开更多
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th...This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
Unmanned Aerial Vehicles(UAVs)acting as aerial users to access the cellular network form a promising solution to guarantee its safe and efficient operations via the high-quality communication.Due to the flexible mobil...Unmanned Aerial Vehicles(UAVs)acting as aerial users to access the cellular network form a promising solution to guarantee its safe and efficient operations via the high-quality communication.Due to the flexible mobility of UAVs and the coverage range limits of ground base station(GBS),the signalto-noise ratio(SNR)of the communication link between UAVs and GBS will fluctuate.It is an important requirement to maintain the UAV’s cellular connection to meet a certain SNR requirement during the mission for UAV flying from take off to landing.In this paper,we study an efficient trajectory planning method that can minimize a cellular-connected UAV’s mission completion time under the connectivity requirement.The conventional method to tackle this problem adopts graph theory or a dynamic programming method to optimize the trajectory,which generally incurs high computational complexities.Moreover,there is a nonnegligible performance gap compared to the optimal solution.To this end,we propose an iterative trajectory optimizing algorithm based on geometric planning.Firstly,we apply graph theory to obtain all the possible UAV-GBS association sequences and select the candidate association sequences based on the topological relationship among UAV and GBSs.Next,adopting the triangle inequality property,an iterative handover location design is proposed to determine the shortest flight trajectory with fast convergence and low computation complexity.Then,the best flight trajectory can be obtained by comparing all the candidate trajectories.Lastly,we revealed the tradeoff between mission completion time and flight energy consumption.Numerical results validate that our proposed solution can obtain the effectiveness with set accuracy and outperform against the benchmark schemes with affordable computation time.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3104502)the National Natural Science Foundation of China(No.62301251)+2 种基金the Natural Science Foundation of Jiangsu Province of China under Project(No.BK20220883)the open research fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2024D04)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.
基金funded by the research project“BR24992947—Development of Robots,Scientific,Technical,and Software for Flexible Robotization and Industrial Automation(RPA)in Automotive Industrial Enterprises in Kazakhstan Using Artificial Intelligence”.
文摘Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications.
文摘The hyper-redundant manipulator(HRM)can explore narrow and curved pipelines by leveraging its high flexibility and redundancy.However,planning collision-free motion trajectories for HRMs in confined environments remains a significant challenge.To address this issue,a pipeline inspection approach that combines nonlinear model predictive control(NMPC)with the snake-inspired crawling algorithm(SCA)is proposed.The approach consists of three processes:insertion,inspection,and exit.The insertion and exit processes utilize the SCA,inspired by snake motion,to significantly reduce path planning time.The inspection process employs NMPC to generate collision-free motion.The prototype HRM is developed,and inspection experiments are conducted in various complex pipeline scenarios to validate the effectiveness and feasibility of the proposed method.Experimental results demonstrate that the approach effectively minimizes the computational cost of path planning,offering a practical solution for HRM applications in pipeline inspection.
基金supported by the National Science Foundation of China(Grant No.52375246,No.52372428,No.52105100)Guangxi Science and Technology Program(Grant No.2023AB09014)Jilin Province Science and Technology Development Program,(Grant No.20230201094GX,No.20230201069GX).
文摘The automatic and rapid generation of excavation trajectories is the foundation for achieving an intelligent excavator.To obtain high-performance trajectories that enhance operational capacity while avoiding the numerous issues present in existing methods for generating effective excavation paths,this paper proposes a trajectory generation method for excavators based on imitation learning,using the mole as a bionic prototype.Given the high excavation efficiency of moles,this paper first analyzes the structural characteristics of the mole’s forelimbs,its digging principles,morphology,and trajectory patterns.Subsequently,a higher-order polynomial is employed to fit and optimize the mole’s excavation trajectory.Next,imitation learning is conducted on sample trajectories based on Dynamic Movement Primitives,followed by the introduction of an obstacle avoidance algorithm.Simulation experiments and comparisons demonstrate that the mole-inspired trajectory method used in this paper performs well and possesses the ability to generate obstacle avoidance trajectories,as well as the convenience of transferring across different machine models.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52072215, 52221005, 52272386)Beijing Municipal Natrual Science Foundation (Grant No. L243025)+2 种基金National Key R&D Program of China (Grant No. 2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobilityfundamental Research Funds for the Central Universities
文摘Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,are limited by a high center of gravity,which increases the risk of rollover.Road bulges,sinkholes,and unexpected debris all present additional challenges for autonomous trucks’operational design,which current perception and decisionmaking algorithms often overlook.To mitigate rollover risks and improve adaptability to damaged roads,this paper presents a novel Road Obstacle-Involved Trajectory Planner(ROITP).The planner categorizes road obstacles using a learning-based algorithm.A discrete optimization algorithm selects a multi-objective optimal trajectory while taking into account constraints and objective functions derived from truck dynamics.Validation across various scenarios on a hardware-in-loop platform demonstrates that the proposed planner is effective and feasible for real-time implementation.
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
基金supported by the National Natural Science Foundation of China(No.12332023)the Zhejiang Provincial Natural Science Foundation of China(No.LY23E050010).
文摘1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.
基金supported by the National Natural Science Foundation of China(6127334961203223+1 种基金61175109)the Innovation Foundation of BUAA for Ph.D.Graduates(YWF-14-YJSY-013)
文摘The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.
基金Basic Scientific Research Projects of Nanjing University of Aeronautics & Astronautics (NS 2010128)
文摘A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method.
基金supported by the National Basic Research Program of China (No.2013CB733000)the National Natural Science Foundation of China (No.61175080)BUPT Excellent Ph.D.Students Foundation of China (No.CX201427)
文摘Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude disturbance is established as a function of joint angles, collision direction and relative velocity between robotic hand and the target.Secondly, on the premise of keeping correct capture pose, a novel optimization factor in null space is designed to minimize base attitude disturbance and ensure that the joint angles do not exceed their limits simultaneously.After reaching the balance state, a desired configuration is achieved at the contact point.Thereafter, particle swarm optimization(PSO) algorithm is employed to solve the pre-impact trajectory planning from its initial configuration to the desired configuration to achieve the minimized base attitude disturbance caused by impact and the correct capture pose simultaneously.Finally, the proposed method is applied to a 7-dof free-floating space manipulator and the simulation results verify the effectiveness.
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金supported by the National Natural Science Foundation of China(6157337461503408)
文摘An optimal midcourse trajectory planning approach that considers the capture region(CR) of the terminal guidance is proposed in this article based on the Gauss pseudospectral method(GPM). Firstly, the planar CR of the proportional navigation in terminal guidance is analyzed and innovatively introduced in the midcourse trajectory planning problems, with the collision triangle(CT) serving as the ideal terminal states parameters of the midcourse phase, and the CR area serving as the robustness against target maneuvers. Secondly, the midcourse trajectory planning problem that considers the path, terminal and control constraints is formulated and the well-developed GPM is used to generate the nominal trajectory that meets the CR demands. The interceptor will reshape the trajectory only when the former CR fails to cover the target, which has loosened the critical demand for frequent trajectory modification. Finally, the simulations of four different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant 61631004 and 61571089
文摘Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.
文摘Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs)have been used in research and development community due to their strong potential in high-risk missions.One of the most important civilian implementations of UAV/UGV cooperative path planning is delivering medical or emergency supplies during disasters such as wildfires,the focus of this paper.However,wildfires themselves pose risk to the UAVs/UGVs and their paths should be planned to avert the risk as well as complete the mission.In this paper,wildfire growth is simulated using a coupled Partial Differential Equation(PDE)model,widely used in literature for modeling wildfires,in a grid environment with added process and measurement noise.Using principles of Proper Orthogonal Decomposition(POD),and with an appropriate choice of decomposition modes,a low-dimensional equivalent fire growth model is obtained for the deployment of the space-time Kalman Filtering(KF)paradigm for estimation of wildfires using simulated data.The KF paradigm is then used to estimate and predict the propagation of wildfire based on local data obtained from a camera mounted on the UAV.This information is then used to obtain a safe path for the UGV that needs to travel from an initial location to the final position while the UAV’s path is planned to gather information on wildfire.Path planning of both UAV and UGV is carried out using a PDE based method that allows incorporation of threats due to wildfire and other obstacles in the form of risk function.The results from numerical simulation are presented to validate the proposed estimation and path planning methods.
基金supported by the National Natural Science Foundation of China(51605251)Tsinghua University Initiative Scientific Research Program(2014Z05093).
文摘A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.
基金supported in part by the Research Grants Council of the Hong Kong Special Administrative Region of China(11202318,11203721)the Australian Research Council(DP200100700)。
文摘This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.
文摘This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金This work was supported by National Natural Science Foundation of China(NO.61703197 and NO.62061027).
文摘Unmanned Aerial Vehicles(UAVs)acting as aerial users to access the cellular network form a promising solution to guarantee its safe and efficient operations via the high-quality communication.Due to the flexible mobility of UAVs and the coverage range limits of ground base station(GBS),the signalto-noise ratio(SNR)of the communication link between UAVs and GBS will fluctuate.It is an important requirement to maintain the UAV’s cellular connection to meet a certain SNR requirement during the mission for UAV flying from take off to landing.In this paper,we study an efficient trajectory planning method that can minimize a cellular-connected UAV’s mission completion time under the connectivity requirement.The conventional method to tackle this problem adopts graph theory or a dynamic programming method to optimize the trajectory,which generally incurs high computational complexities.Moreover,there is a nonnegligible performance gap compared to the optimal solution.To this end,we propose an iterative trajectory optimizing algorithm based on geometric planning.Firstly,we apply graph theory to obtain all the possible UAV-GBS association sequences and select the candidate association sequences based on the topological relationship among UAV and GBSs.Next,adopting the triangle inequality property,an iterative handover location design is proposed to determine the shortest flight trajectory with fast convergence and low computation complexity.Then,the best flight trajectory can be obtained by comparing all the candidate trajectories.Lastly,we revealed the tradeoff between mission completion time and flight energy consumption.Numerical results validate that our proposed solution can obtain the effectiveness with set accuracy and outperform against the benchmark schemes with affordable computation time.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.