The advent of autonomous vehicles(AVs)is expected to transform the current transportation system into a safe and reliable one.The existing infrastructures,operational criteria,and design method were developed to meet ...The advent of autonomous vehicles(AVs)is expected to transform the current transportation system into a safe and reliable one.The existing infrastructures,operational criteria,and design method were developed to meet the requirements of human drivers.However,previous studies have shown that in the traditional horizontal and vertical combined design methods,where the two-dimensional alignment elements change,there are varying changes in curvature and torsion,which cause the continuous degradation of the spatial curve and torsion.This continuous degradation will inevitably cause changes in the trajectory of Autonomous Vehicles(AVs),thereby affecting driving safety.Therefore,studying the characteristics of autonomous vehicles trajectory deviation has theoretical significance for optimizing highway alignment safety design.Driving simulation tests were performed by using PreScan and Simulink to calibrate the lateral deviation.A machine learning approach called the Gradient Boosting Decision Tree(GBDT)algorithm was implemented to build a model and express the relationship between space alignment parameters and lane deviation.The results showed that the AV’s driving trajectory is significantly affected by the space alignment factors when the vehicle is driving in the inner lane,the downhill section,and the left-turn section.These findings will provide a novel perspective for road safety research based on autonomous vehicle driving trajectories.展开更多
Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflecti...Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.展开更多
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based...This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.展开更多
The control system presently used in shield posture rectification is based on driver experience,which is marginally reliable.The study of the related theory is flawed.Therefore,a decision-making approach for the devia...The control system presently used in shield posture rectification is based on driver experience,which is marginally reliable.The study of the related theory is flawed.Therefore,a decision-making approach for the deviation correction trajectory and posture rectification load for an earth pressure balance(EPB)shield is proposed.A calculation model of posture rectification load of an EPB shield is developed by considering the interactions among the cutter head,shield shell,and ground.The additional position change during the shield attitude correction is highlighted.The posture rectification loads and shield behaviors results can be solved by the proposed method.The influences of the stratum distribution(i.e.,bedrock height in the upper-soft and lower-hard strata)on shield behaviors and posture rectification loads are analyzed.Results indicated that the increase of pitch angle in the upper-soft and lower-hard strata causes a sharp rise in vertical displacement.The bedrock height increases the magnitudes of the required posture rectification moments when hr/D>0.5.For a tunnel with hr/D≤0.5,the variation of hr/D has little effect on the posture rectification moments.Finally,the posture rectifying curves based on the theoretical model are compared with the target ones based on the double circular arc interpolation method.The required results can be obtained regardless of the soil–rock compound stratum distribution.The maximum rectification moment in the rock layer is almost 12.6 times that in the soil layer.Overall,this study provides a valuable reference for moment determination and the trajectory prediction of posture rectification in compound strata.展开更多
For a 3D C-arm computed tomography(CT) system, actual path of the scanner may deviate from the idea circle geometry because of mechanicalinstability,leading to perturbation artifacts in reconstructed images. In this p...For a 3D C-arm computed tomography(CT) system, actual path of the scanner may deviate from the idea circle geometry because of mechanicalinstability,leading to perturbation artifacts in reconstructed images. In this paper, we proposed a modified FBP method for the perturbed trajectories taking into account 6 perturbation parameters without tassuming any condition to be ideal. The preliminary studies demonstrated that this algorithm can acquire promising reconstruction image quality even when the perturbations are relatively large. The comparison of performances among different perturbation parameters is useful for constructing a C-arm CT system.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2022A1515011974)the National Natural Science Foundation of China(51878297)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology Foundation(2021B1212040003).
文摘The advent of autonomous vehicles(AVs)is expected to transform the current transportation system into a safe and reliable one.The existing infrastructures,operational criteria,and design method were developed to meet the requirements of human drivers.However,previous studies have shown that in the traditional horizontal and vertical combined design methods,where the two-dimensional alignment elements change,there are varying changes in curvature and torsion,which cause the continuous degradation of the spatial curve and torsion.This continuous degradation will inevitably cause changes in the trajectory of Autonomous Vehicles(AVs),thereby affecting driving safety.Therefore,studying the characteristics of autonomous vehicles trajectory deviation has theoretical significance for optimizing highway alignment safety design.Driving simulation tests were performed by using PreScan and Simulink to calibrate the lateral deviation.A machine learning approach called the Gradient Boosting Decision Tree(GBDT)algorithm was implemented to build a model and express the relationship between space alignment parameters and lane deviation.The results showed that the AV’s driving trajectory is significantly affected by the space alignment factors when the vehicle is driving in the inner lane,the downhill section,and the left-turn section.These findings will provide a novel perspective for road safety research based on autonomous vehicle driving trajectories.
基金supported in part by Boeing Company and Nanjing University of Aeronautics and Astronautics(NUAA)through the Research on Decision Support Technology of Air Traffic Operation Management in Convective Weather under Project 2022-GT-129in part by the Postgraduate Research and Practice Innovation Program of NUAA(No.xcxjh20240709)。
文摘Addressing the issue that flight plans between Chinese city pairs typically rely on a single route,lacking alternative paths and posing challenges in responding to emergencies,this study employs the“quantile-inflection point method”to analyze specific deviation trajectories,determine deviation thresholds,and identify commonly used deviation paths.By combining multiple similarity metrics,including Euclidean distance,Hausdorff distance,and sector edit distance,with the density-based spatial clustering of applications with noise(DBSCAN)algorithm,the study clusters deviation trajectories to construct a multi-option trajectory set for city pairs.A case study of 23578 flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the effectiveness of the proposed framework.Experimental results show that sector edit distance achieves superior clustering performance compared to Euclidean and Hausdorff distances,with higher silhouette coefficients and lower Davies⁃Bouldin indices,ensuring better intra-cluster compactness and inter-cluster separation.Based on clustering results,19 representative trajectory options are identified,covering both nominal and deviation paths,which significantly enhance route diversity and reflect actual flight practices.This provides a practical basis for optimizing flight paths and scheduling,enhancing the flexibility of route selection for flights between city pairs.
文摘This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.
基金the National Key R&D Program of China(Grant No.2018YFC1505304)the National Major Scientific Instruments Development Project of China(Grant No.41627801)+1 种基金the State Key Program of National Natural Science Foundation of China(Grant No.41731288)the Open Research Fund Program of State Key Laboratory of Permafrost Engineering of China(Grant No.SKLFSE202015).
文摘The control system presently used in shield posture rectification is based on driver experience,which is marginally reliable.The study of the related theory is flawed.Therefore,a decision-making approach for the deviation correction trajectory and posture rectification load for an earth pressure balance(EPB)shield is proposed.A calculation model of posture rectification load of an EPB shield is developed by considering the interactions among the cutter head,shield shell,and ground.The additional position change during the shield attitude correction is highlighted.The posture rectification loads and shield behaviors results can be solved by the proposed method.The influences of the stratum distribution(i.e.,bedrock height in the upper-soft and lower-hard strata)on shield behaviors and posture rectification loads are analyzed.Results indicated that the increase of pitch angle in the upper-soft and lower-hard strata causes a sharp rise in vertical displacement.The bedrock height increases the magnitudes of the required posture rectification moments when hr/D>0.5.For a tunnel with hr/D≤0.5,the variation of hr/D has little effect on the posture rectification moments.Finally,the posture rectifying curves based on the theoretical model are compared with the target ones based on the double circular arc interpolation method.The required results can be obtained regardless of the soil–rock compound stratum distribution.The maximum rectification moment in the rock layer is almost 12.6 times that in the soil layer.Overall,this study provides a valuable reference for moment determination and the trajectory prediction of posture rectification in compound strata.
基金Doctoral Program of Higher Education of Chinagrant number:20093218110024+1 种基金International Science and Technology Cooperation Grantgrant number:BZ2008060
文摘For a 3D C-arm computed tomography(CT) system, actual path of the scanner may deviate from the idea circle geometry because of mechanicalinstability,leading to perturbation artifacts in reconstructed images. In this paper, we proposed a modified FBP method for the perturbed trajectories taking into account 6 perturbation parameters without tassuming any condition to be ideal. The preliminary studies demonstrated that this algorithm can acquire promising reconstruction image quality even when the perturbations are relatively large. The comparison of performances among different perturbation parameters is useful for constructing a C-arm CT system.